Product Description
12t-18t Inboard Germany Type Axle Built-in Brake Drum Axle Trailer Axle for Sale
Product Parameters
Axle Type
|
Max Capacity (T) |
L2 Track (mm) |
Brake ( mm )
|
Bearing |
Spring Seat Installation
|
Axle
|
L4Centre Distanceof Brake Chamber ( mm)
|
JS12FA1347D |
12 |
1840 |
φ420x 180 |
33118 33213 |
≥980 |
150 |
423 |
JS13FA1348D |
13 |
1840 |
φ 420x 200 |
33118 33213
|
≥900 |
150 |
360 |
JS14FA1348D |
14 |
1840 |
φ 420x 200 |
32219 33215 |
≥900 |
150 |
356 |
JS16FA1348D |
16 |
1850 |
φ 420x 200 |
322222 32314 |
≥900 |
150 |
360 |
JS18FA1348D |
18 |
1850 |
Φ420x 200 |
322222 32314 |
≥900 |
150 |
380 |
Wheel Fixing
|
Total Length ( mm )
|
Recommended Wheel
|
Weigth(Kg)
|
||
Stud
|
PCD(mm) |
H(mm) |
|||
10-M22x 1.5ISO |
335 |
280.8 |
~ 2144 |
7.5v-20 |
360 |
10-M22x 1.5ISO |
335 |
280.8 |
~ 2144 |
7.5v-20 |
382 |
10-M22x 1.5ISO |
335 |
280.8 |
~ 2198 |
8.0v-20 |
406 |
10-M22x 1.5ISO |
335 |
280.8 |
~ 2265 |
8.5v-20 |
440 |
10-M22x 1.5ISO |
335 |
280.8 |
~ 2265 |
8.5v-20 |
FAQ
1. What’s your advantage?
— We are manufacturer, we own professinal technology & quality control team; excellent team for foreign trade plus a rich expertise in trading.
2.Where your export to?
— Our export to America, Netherlands, Germany, Italy, Poland, Hungary, Russia, and other European, Asia and Africa countries.
3. Can you send me samples for testing?
— Certainly! We’d like to provide the samples free of charge, but for the freight, pls kindly bear it.
4.Can you supply OEM ?
— Sure, we always supply customized seveices according to customers’ drawing or samples.
5. How long do you finish a new product?
— Usually 20~35days once all information confirmed.
Remark:
Our payment terms
— 30% by T/T in advance, 70% by T/T before shipment
/* May 10, 2571 16:49:51 */!function(){function d(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Where can I find information on axle load limits for various types of vehicles?
When seeking information on axle load limits for different types of vehicles, there are several reliable sources where you can find the necessary information. Here’s a detailed explanation of where you can find information on axle load limits:
1. Vehicle Owner’s Manual:
The first and most accessible source of information on axle load limits is the vehicle owner’s manual. The owner’s manual provided by the vehicle manufacturer typically includes important details about the vehicle’s specifications, including axle load limits. Look for sections related to vehicle loading, weight distribution, or axle specifications to find the recommended load limits for each axle of your specific vehicle model.
2. Government Transportation Authorities:
Government transportation authorities, such as departments of transportation or road transport authorities, often provide guidelines and regulations regarding vehicle weight limits, including axle load limits. These authorities establish and enforce weight restrictions to ensure road safety and prevent damage to infrastructure. Visit the website of your local or national transportation authority to access relevant regulations or guidelines pertaining to axle load limits for various types of vehicles.
3. Commercial Vehicle Regulations:
If you are specifically interested in axle load limits for commercial vehicles, such as trucks or buses, consult the commercial vehicle regulations applicable in your region. These regulations are established to ensure safe and efficient operation of commercial vehicles on public roads. Regulatory bodies responsible for commercial vehicle operations often provide detailed information on axle load limits, weight distribution requirements, and other related specifications.
4. Vehicle Manufacturer or Dealer:
If you require axle load limit information for a specific vehicle model or variant, contacting the vehicle manufacturer or a local authorized dealer can be helpful. They can provide accurate and up-to-date information specific to your vehicle. Provide them with the vehicle identification number (VIN) or other relevant details to ensure they can assist you accurately.
5. Online Resources and Databases:
There are online resources and databases dedicated to providing information on vehicle specifications, including axle load limits. These resources may include vehicle data websites, forums, or government databases that compile and provide access to vehicle specifications and regulatory information. Conduct an internet search using relevant keywords to find reliable online sources that offer information on axle load limits for various types of vehicles.
When seeking information on axle load limits, it’s crucial to ensure that the information you obtain is accurate, up-to-date, and applicable to your specific vehicle and jurisdiction. Regulations and load limits can vary depending on the country, region, vehicle type, and other factors. Therefore, it is advisable to consult official sources or seek professional advice to ensure compliance with applicable regulations and ensure safe and legal operation of your vehicle.
Are there specific maintenance tips to extend the lifespan of my vehicle’s axles?
Maintaining the axles of your vehicle is crucial for ensuring their longevity, performance, and overall safety. Here are some specific maintenance tips to extend the lifespan of your vehicle’s axles:
- Regular Inspection:
- Lubrication:
- Seal Inspection and Replacement:
- Proper Loading and Towing:
- Driving Techniques:
- Regular Wheel Alignment:
- Proper Tire Inflation:
- Service Intervals:
Perform regular visual inspections of the axles to check for any signs of damage, leaks, or excessive wear. Look for cracks, bends, or rust on the axle housing, and inspect the axle shafts, seals, and boots. Early detection of issues can help prevent further damage and costly repairs.
Follow the manufacturer’s recommendations for axle lubrication. Proper lubrication helps reduce friction and wear on the axle components. Regularly check the axle’s lubricant level and quality, and replace it as necessary. Use the recommended lubricant type and viscosity for your specific axle.
Check the axle seals for any signs of leaks, such as fluid accumulation around the axle ends. Leaking seals can allow contaminants to enter the axle assembly, leading to premature wear and damage. Replace worn or damaged seals promptly to maintain proper lubrication and prevent contamination.
Ensure that you do not exceed the weight capacity of your vehicle’s axles. Overloading or towing beyond the recommended limits can put excessive stress on the axles, leading to premature wear or failure. Be mindful of the payload and towing capacity specified by the vehicle manufacturer.
Adopt proper driving techniques to minimize stress on the axles. Avoid sudden acceleration, aggressive cornering, and harsh braking, as these actions can subject the axles to excessive forces. Additionally, be cautious when driving over rough terrain or obstacles to prevent impacts that could damage the axles.
Maintain proper wheel alignment to prevent excessive strain on the axles. Misaligned wheels can put uneven loads on the axles, leading to accelerated wear. Regularly check and adjust the wheel alignment as per the manufacturer’s recommendations.
Ensure that your vehicle’s tires are properly inflated according to the recommended tire pressure. Underinflated or overinflated tires can affect the load distribution on the axles and increase the risk of axle damage. Regularly check and maintain the correct tire pressure.
Follow the recommended service intervals for your vehicle, which may include axle inspections, lubricant changes, and other maintenance tasks. Adhering to these intervals ensures that the axles are properly maintained and any potential issues are addressed in a timely manner.
It’s important to consult your vehicle’s owner’s manual for specific maintenance guidelines and intervals provided by the manufacturer. Additionally, if you notice any unusual noises, vibrations, or handling issues related to the axles, it is advisable to have your vehicle inspected by a qualified mechanic to identify and address any potential axle problems promptly.
What are the factors to consider when choosing an axle for a custom-built vehicle?
Choosing the right axle for a custom-built vehicle is crucial for ensuring optimal performance, durability, and safety. Here are several key factors to consider when selecting an axle for a custom-built vehicle:
- Vehicle Type and Intended Use:
- Axle Type:
- Weight Capacity:
- Axle Ratio:
- Braking System Compatibility:
- Suspension Compatibility:
- Aftermarket Support:
- Budget:
Consider the type of vehicle you are building and its intended use. Factors such as vehicle weight, power output, terrain (on-road or off-road), towing capacity, and payload requirements will influence the axle selection. Off-road vehicles may require axles with higher strength and durability, while performance-oriented vehicles may benefit from axles that can handle increased power and torque.
Choose the appropriate axle type based on your vehicle’s drivetrain configuration. Common axle types include solid axles (live axles) and independent axles. Solid axles are often used in heavy-duty applications and off-road vehicles due to their robustness and ability to handle high loads. Independent axles offer improved ride quality and handling characteristics but may have lower load-carrying capacities.
Determine the required weight capacity of the axle based on the vehicle’s weight and intended payload. It’s crucial to select an axle that can handle the anticipated loads without exceeding its weight rating. Consider factors such as cargo, passengers, and accessories that may contribute to the overall weight.
Choose an axle ratio that matches your vehicle’s powertrain and desired performance characteristics. The axle ratio affects the torque multiplication between the engine and wheels, influencing acceleration, towing capability, and fuel efficiency. Higher axle ratios provide more torque multiplication for improved low-end power but may sacrifice top-end speed.
Ensure that the chosen axle is compatible with your vehicle’s braking system. Consider factors such as the axle’s mounting provisions for brake calipers, rotor size compatibility, and the need for an anti-lock braking system (ABS) if required.
Consider the compatibility of the chosen axle with your vehicle’s suspension system. Factors such as axle mounting points, suspension geometry, and overall ride height should be taken into account. Ensure that the axle can be properly integrated with your chosen suspension components and that it provides sufficient ground clearance for your specific application.
Consider the availability of aftermarket support for the chosen axle. This includes access to replacement parts, upgrade options, and technical expertise. A robust aftermarket support network can be beneficial for future maintenance, repairs, and customization needs.
Set a realistic budget for the axle selection, keeping in mind that high-performance or specialized axles may come at a higher cost. Balance your requirements with your budget to find the best axle option that meets your needs without exceeding your financial limitations.
When choosing an axle for a custom-built vehicle, it’s recommended to consult with knowledgeable professionals, experienced builders, or reputable axle manufacturers. They can provide valuable guidance, assist in understanding technical specifications, and help you select the most suitable axle for your specific custom vehicle project.
editor by lmc 2024-11-06
China Standard С т у п и ц а R49841 Fits John Deere Tractor 8 Bolt Front Axle Steering Wheel Hub axle cv joint
Product Description
Ступица John Deere, Hub,front Wheel R49841
Применяется в агрегатах:
1560 and 1565 CZPT Drills
1590 CZPT Drill
1650 Series Drawn Chisel Plows
1690 No-Till Air Drill
1810 Air Seeder
1820 Flex Air Hoe Drill
1830 Air Hoe Drill
1835 Flex Air Hoe Drill
1840 Air Seeder
1860 No-Till Air Drill
1870 Air Hoe Drill 40 and 56 ft
1870 Air Hoe Drill 76 ft.
1890 No-Till Air Drill
1895 No-Till Air Drill
1990 CCS Air Drill
2100 Minimum Till Ripper
210C Backhoe Loader
210LE Landscape Loader
2200 Field Cultivator
2210 Field Cultivator
2230FH Field Cultivator
2230LL Level Lift Field Cultivator
2310 Mulch Finisher
2330 Mulch Finisher
2400 Chisel Plow
2410 Chisel Plow
2410C Nutrient Applicator
2430 Chisel Plow
2430C Nutrient Applicator
2510C Conventional Applicator
2510S Strip Tillage Applicator
2620, 2623, 2625 Disk
2623VT Vertical Tillage
2630, 2633, 2635 Disk
2633VT Vertical Tillage
2660VT Vertical Tillage
2700 Mulch Ripper
2720 Disk Ripper
2730 Combination Ripper
2955 Tractor
300D, 310D and 315D Backhoe Loader
3050, 3350 Tractors
3055, 3255 Tractors
310A, 310B Backhoe Loaders
310C Backhoe Loader
310E, 310SE and 315SE Backhoe Loaders
310G,310SG and 315SG Backhoe Loaders
315C Sideshift Backhoe Loader
315CH Sideshift Backhoe Loader
401D Tractor
4030 Tractor
4040, 4240 and 4440 Tractors
4040, 4240, 4440 Tractors
4050, 4250 and 4450 Tractors
4055, 4255 and 4455 Tractors
4230 Tractor
4430 Tractor
480C Forklift
482C Forklift
485E, 486E and 488E Forklifts
512 Disk Ripper
6571, 6110, 6210 Tractors
6571, 6120, 6220 Tractors
6100, 6200 Tractors
6100D, 6110D, 6115D, 6125D, 6130D, 6140D Tractors
6110, 6210, 6310 and 6410 Tractors
6110L, 6210L, 6310L, 6410L, 6510L Tractors
6120, 6220 Tractors
6120L, 6220L Tractors
6130 Tractor
6140J Tractor
6200, 6300, 6400, and 6500 Tractors
6200L, 6300L, 6400L and 6500L Tractors
6205, 6505 Tractors
6215 and 6415 Tractors
6215, 6515 Tractors
6225 Tractor
6230 Premium Tractors
6230 Tractor
6300, 6400 Tractors
6310, 6410 Tractors
6310S, 6410S, 6510S Tractors
6320, 6420 Tractors
6320, 6420, 6420S Tractors
6320L, 6420L, 6520L Tractors
6325 Tractor
6330 Premium Tractors
6330 Tractor
637 Disk
6400SP Tractor
6405 Tractor
6415 Classic and 6615 Classic Tractors
6415 Tractor
6425 Tractor
6430 Premium Tractors
6430 Tractor
6500 Self-Propelled Sprayer
6510, 6610 Tractors
6520, 6620 Tractors
6525 Tractor
6530 Tractor
6534 Tractor
655 Central Metering Seeder
6600 Self-Propelled Sprayer
6603 Tractor
6605 Tractor
6615 and 6715 Tractors
6630 Tractor
6700 Self-Propelled Sprayer
685 Chisel Plow
7130 Tractor
7230 Tractor
730 Air Disk Drill
730 LL Air Disk Drill
7330 Tractor
737 Air Hoe Drill
7405 Tractor
7445 Cotton Stripper
750 Series All-Till CZPT Drill
7500 Tractor
770 Air Drill
775 Air Drill
780 Air Drill
985 Field Cultivator
9920 Cotton Picker
9930 Cotton Picker
H540F Flex Air Hoe Drill
H541 Air Hoe Drill
H550 Air Hoe Drill
H550F Flex Air Hoe Drill
H560F Flex Air Hoe Drill
H561 Air Hoe Drill
JD310 Backhoe Loader
N530 No-Till Air Drill
N530C Air Drill
N530F No-Till Air Drill
N536 No-Till Air Drill
N536C Air Drill
N540 No-Till Air Drill
N540C Air Drill
N540F No-Till Air Drill
N542 No-Till Air Drill
N542C Air Drill
N543F No-Till Air Drill
N550 No-Till Air Drill
N560 No-Till Air Drill
N560F No-Till Air Drill
P540 Air Hoe Drill
P556 Air Hoe Drill
P576 Air Hoe Drill
SE6571, SE6110, SE6210, SE6310, SE6410 Tractors
SE6571, SE6120, SE6220 Tractors
SE6100, SE6200, SE6300, SE6400 Tractors
SE6320, SE6420, SE6520, SE6620 Tractors
SE6510, SE6610 Tractors
Tractor 6110E
Detailed Feature:
Accurate in reading drawings & Fast in delivery & Exact dimension control & 100% quality control & OEM Service & Strict material inspection & Prompt quote & lead time guarantee |
|
1. Material: | Ductile Iron, Gray Iron, High Cr Iron, Resistance Iron |
2. Items: | FOB HangZhou or ZheJiang , CIF XXX, Transportation by Sea |
3. Lead time: | 30~40 days |
4. Place of origin | HangZhou, China |
5. Software for specification drawings: | PDF, Auto CAD, Solid work, JPG, ProE |
6. Main production equipments: | Wax injection, CNC-machine, machine-center, Heat treatment Furnace |
7. Productivity: | 50000 pcs / year |
8. Packaging: | Wooden package after mandatory treatment or other |
9. They are using for Drilling rig, Agricultural machinery, Auto part, Rail Wagon, Train Truck, Trailer, Carriage, Excavator, Vessel, Mining Machinery, Valves, Convey Machinery, Forklift, Backhoe Loaders Crane, Derricks, Transportation Equipment, Compactor, Grader blade pipe connection and others. |
|
10. We make precision casting,investment casting and steel Sand Casting in HangZhou, China | |
11. We can do different kinds of surface treatment after casting, such as machining, polishing, and plating. | |
12. CNC Machined parts (machining part or machinery part or machined part), metal work (metal products) and stamping parts are suitable for us also |
|
13. Export Markets: Australia Lost Foam Casting; America, U.S.A. United States Lost Foam Casting; Canada Lost Foam Casting; U.K. England, Britain Lost Foam Casting; Germany Lost Foam Casting; France Lost Foam Casting; Italy Lost Foam Casting Spain Espana Lost Foam Casting; Holand Lost Foam Casting South Africa Lost Foam Casting; Danmark Lost Foam Casting Sweden Lost Foam Casting; Finland Lost Foam Casting |
|
14. Supplier: China HangZhou Lost Foam Casting factory; China HangZhou Lost Foam Casting company; China HangZhou Lost Foam Casting Co., Ltd; China HangZhou Lost Foam Casting inc; China HangZhou Lost Foam Casting corporation; China HangZhou Lost Foam Casting Manufacturer; China HangZhou Lost Foam Casting supplier; China HangZhou Lost Foam Casting part; China HangZhou Lost Foam Casting |
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Type: | Rake |
---|---|
Usage: | Planting and Fertilization |
Material: | Carbon Steel |
Power Source: | Diesel |
Weight: | 10 Kgs |
After-sales Service: | 1 Year |
Samples: |
US$ 120/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
| Customized Request |
---|
What is the primary function of an axle hub in a vehicle’s wheel assembly?
The primary function of an axle hub in a vehicle’s wheel assembly is to connect the wheel to the axle and provide a mounting point for the wheel bearings. Here’s a detailed explanation of the primary functions of an axle hub:
1. Wheel Mounting:
The axle hub serves as the component that connects the wheel to the vehicle’s axle. It is typically a cylindrical or disc-shaped structure located at the center of the wheel assembly. The hub contains bolt holes or studs that align with the corresponding holes or studs on the wheel, allowing for secure attachment and proper alignment of the wheel.
2. Bearing Support:
The axle hub provides a mounting point for the wheel bearings. Wheel bearings are crucial components that allow the wheel to rotate smoothly while supporting the weight of the vehicle. The hub contains a bearing race or races, which are machined surfaces that support the inner and outer wheel bearings. The bearings fit snugly into the hub and enable the wheel to rotate freely around the axle.
3. Load Transmission:
Another important function of the axle hub is to transmit the load from the wheel to the axle. As the vehicle moves, various forces act on the wheel, including the weight of the vehicle, acceleration and braking forces, and lateral forces during turns. The axle hub, along with the wheel bearings, helps distribute and transfer these forces from the wheel to the axle, allowing for smooth and controlled movement of the vehicle.
4. Hub Assembly Integration:
In many vehicles, the axle hub integrates with other components of the wheel assembly. For example, it may have provisions for attaching the brake rotor or drum, which are essential for the vehicle’s braking system. In vehicles with front-wheel drive or all-wheel drive, the axle hub may also incorporate features for connecting the CV (constant velocity) joint or driveshaft, allowing for power transmission to the wheels.
5. Wheel Alignment:
The axle hub plays a role in maintaining proper wheel alignment. The hub’s design and dimensions are critical in ensuring that the wheel is centered and aligned correctly with the vehicle’s suspension system. Proper wheel alignment is essential for optimal handling, tire wear, and overall vehicle performance.
In summary, the primary function of an axle hub in a vehicle’s wheel assembly is to connect the wheel to the axle and provide a mounting point for the wheel bearings. It facilitates the secure attachment of the wheel, supports the wheel bearings for smooth rotation, transmits loads from the wheel to the axle, integrates with other components of the wheel assembly, and contributes to proper wheel alignment. The axle hub is a critical component that enables safe and efficient operation of the vehicle’s wheels.
Are there specific tools required for DIY axle hub replacement, and where can I find them?
When undertaking a DIY axle hub replacement, certain tools are needed to ensure a smooth and successful process. Here are some specific tools that are commonly required for DIY axle hub replacement and where you can find them:
- Jack and jack stands: These tools are essential for raising the vehicle off the ground and providing a stable support system. You can find jacks and jack stands at automotive supply stores, hardware stores, and online retailers.
- Lug wrench or socket set: A lug wrench or a socket set with the appropriate size socket is necessary to loosen and tighten the lug nuts on the wheel. These tools are commonly available at automotive supply stores, hardware stores, and online retailers.
- Torque wrench: A torque wrench is required to tighten the lug nuts on the wheel and other fasteners to the manufacturer’s recommended torque specifications. Torque wrenches can be found at automotive supply stores, tool stores, and online retailers.
- Pry bar: A pry bar is useful for gently separating the axle hub assembly from the mounting point, especially if it is tightly secured. Pry bars are available at automotive supply stores, hardware stores, and online retailers.
- Hammer: A hammer can be used to tap or lightly strike the axle hub assembly or its components for removal or installation. Hammers are commonly available at hardware stores, tool stores, and online retailers.
- Wheel bearing grease: High-quality wheel bearing grease is necessary for lubricating the axle hub assembly and ensuring smooth operation. Wheel bearing grease can be purchased at automotive supply stores, lubricant suppliers, and online retailers.
- Additional tools: Depending on the specific vehicle and axle hub assembly, you may require additional tools such as a socket set, wrenches, pliers, or specific specialty tools. Consult the vehicle’s service manual or online resources for the specific tools needed for your vehicle model.
To find these tools, you can visit local automotive supply stores, hardware stores, or tool stores in your area. They typically carry a wide range of automotive tools and equipment. Alternatively, you can explore online retailers that specialize in automotive tools and equipment, where you can conveniently browse and purchase the tools you need.
It’s important to ensure that the tools you acquire are of good quality and suitable for the task at hand. Investing in quality tools can make the DIY axle hub replacement process more efficient and help achieve better results. Additionally, always follow the manufacturer’s instructions and safety guidelines when using tools and equipment.
In summary, specific tools are required for DIY axle hub replacement, such as a jack and jack stands, lug wrench or socket set, torque wrench, pry bar, hammer, and wheel bearing grease. These tools can be found at automotive supply stores, hardware stores, tool stores, and online retailers. Acquiring quality tools and following proper safety guidelines will contribute to a successful DIY axle hub replacement.
How do changes in wheel offset affect the angles and performance of axle hubs?
Changes in wheel offset can have a significant impact on the angles and performance of axle hubs. Here’s a detailed explanation:
Wheel offset refers to the distance between the centerline of the wheel and the mounting surface. It determines how far the wheel and tire assembly will be positioned in relation to the axle hub. There are three types of wheel offsets: positive offset, zero offset, and negative offset.
Here’s how changes in wheel offset can affect the angles and performance of axle hubs:
- Camber Angle: Camber angle refers to the inward or outward tilt of the wheel when viewed from the front of the vehicle. Changes in wheel offset can impact the camber angle. Increasing positive offset or reducing negative offset typically results in more positive camber, while increasing negative offset or reducing positive offset leads to more negative camber. Improper camber angle can cause uneven tire wear, reduced traction, and handling issues.
- Track Width: Wheel offset affects the track width, which is the distance between the centerlines of the left and right wheels. Wider track width can improve stability and cornering performance. Increasing positive offset or reducing negative offset generally widens the track width, while increasing negative offset or reducing positive offset narrows it.
- Steering Geometry: Changes in wheel offset also impact the steering geometry of the vehicle. Altering the offset can affect the scrub radius, which is the distance between the tire contact patch and the steering axis. Changes in scrub radius can influence steering effort, feedback, and stability. It’s important to maintain the appropriate scrub radius for optimal handling and performance.
- Wheel Bearing Load: Wheel offset affects the load applied to the wheel bearings. Increasing positive offset or reducing negative offset generally increases the load on the inner wheel bearing, while increasing negative offset or reducing positive offset increases the load on the outer wheel bearing. Proper wheel bearing load is crucial for their longevity and performance.
- Clearance and Interference: Changes in wheel offset can also impact the clearance between the wheel and suspension components or bodywork. Insufficient clearance due to excessive positive offset or inadequate clearance due to excessive negative offset can lead to rubbing, interference, or potential damage to the axle hub, suspension parts, or bodywork.
It’s important to note that any changes in wheel offset should be done within the manufacturer’s recommended specifications or in consultation with knowledgeable professionals. Deviating from the recommended wheel offset can lead to adverse effects on the axle hub angles and performance, as well as other aspects of the vehicle’s handling and safety.
When modifying wheel offset, it is crucial to consider the overall impact on the vehicle’s suspension geometry, clearance, and alignment. It may be necessary to make corresponding adjustments to maintain proper alignment angles, such as camber, toe, and caster, to ensure optimal tire wear, handling, and performance.
In summary, changes in wheel offset can have a significant impact on the angles and performance of axle hubs. They can affect camber angles, track width, steering geometry, wheel bearing load, and clearance. It is important to adhere to manufacturer’s specifications and consult with knowledgeable professionals when considering changes in wheel offset to ensure proper alignment, optimal performance, and safe operation of the vehicle.
editor by CX 2024-04-15
China Standard OEM Customized Tractor Rear Wheel Hub Assembly Components Forged Alloy Steel Axle Wheel Hub detroit axle
Product Description
1
Product:
Name: OEM customized tractor rear wheel hub assembly components forged alloy steel axle wheel hub
Material: 42CrMo
Processing: die forging
Surface treatment: Sand blast
Weight: From .1kg-20kg
Packing: Standard Export Packing
Min order: 1000pcs
Standard: JIS, DIN, ASTM, GB
Customized production is available as your drawings or sample.
Process | Die Forging | ||||||
Material | Stainless Steel, Carbon Steel, Alloy Steel | ||||||
Weight | 1Kg~20Kg | ||||||
Heat Treatment | Quenching, Annealing,Tempering,Normalizing, Quenching and Tempering | ||||||
Testing instrument | composition testing | Spectrometer, Metallographic microscope | |||||
Performance testing | Hardness tester, Tensile testing machine | ||||||
Size Measuring | CMM,Micrometer, Vernier Caliper, Depth Caliper, feeler gauge | ||||||
Thread Gauge , Height Gauge | |||||||
Roughness | Ra1.6~Ra6.3 | ||||||
Machining Equipment | CNC Center , CNC Machines, Turning, Drilling, Milling, boring machine,Grinding Machines, | ||||||
Wire EDM,Laser Cutting&Welding, Plasma Cutting &Welding, EDM etc. | |||||||
Quality control | Sampling inspection of raw materials and semi-finished products, 100% Inspection of finished products | ||||||
Surface Treatment | Shot Blast , Powder Coating, Polishing, Galvanized , Chrome Plated | ||||||
60000T / Years | |||||||
Lead Time | Normally 30 – 45 Days. | ||||||
Payment Terms | T/T , L/C | ||||||
Material Standard | ASTM , AISI , DIN , BS, JIS, GB, | ||||||
Certification | ISO9001:2008, IATF16949:2016 |
2
Products Quality Control
Quality control involve the inspection and control of incoming materials, production processes, and finished products.
The quality control process includes,
1 First of all, the incoming raw materials with random sampling are analyzed by metallographic microscope to ensure that the chemical composition meets the production requirements
2 Then In the production process, there are QC staffs timely sampling ensure that the products are free of defects in the manufacturing process, and to coordinate and handle any abnormal quality issues may be occurred.
3 The final step of production process is magnetic particle flaw detector of the metal parts to detect it’s hidden crack or other defects.
4 All the finished metal parts is sampled in proportion and sent to the laboratory for various mechanical performance tests and size measurement, and the surface quality is manually 100% inspected.
The relevant testing equipment pictures are as following:
3
Quality Management System Control:
We strictly carry out system management accordance with iso9001 and ts16949 quality standards. And 5S lean production management is implemented on the production site.
The production management site as following:
4
Company profile
Establis5hed in 2018, HiHangZhou Precision Forging Technology Co., Ltd. is 1 of the subsidiaries of HiHangZhou Group, a globally recognized enterprise Involved in multiple fields of high-end machine and equipment manufacturing. Our company is the expert in forging ,casting and machining metal application solutions for manufacturing industries.
We provide top-level competitive ferrous metals products and services which are used in the fields of vehicle, rail, power generation, mining and excavation, forestry and agriculture machinery etc. We have passed ISO/TS16949 quality management system certification in 2571 .
HiHangZhou Precision Forging Technology Co., Ltd. pursue the principle of ” try our best to build the company into an ideal platform for all of employees to achieve our value and to contribute to society”, Through the efficient, positive, responsible, open and innovative team, focusing on our customers’ needs, quick response, continuous improvement,meeting the customers’ requirement for quality, cost, delivery and service and striving to exceed our customers’ expectations. We are striving to be a leading forged metal products provider in the industry.
5
Our Advantages:
Brand
Our parent company, HiHangZhou Group, is a world-renowned high-end machinery manufacturing enterprise with 40 domestic subsidiaries and branches and 8 foreign manufacturing plants. Has long-term experience and good reputation in cooperation with world-renowned enterprises.
Technology
We have a complete production process and equipment research and development capabilities for ferrous metals forming. More than 25 years of production experience in forging equipment and casting equipment manufacturers, make us more thoroughly get all the performance of each equipment. One-third of our company’s employees are technician and R&D personnel, ensuring that high-quality products are produced with high efficiency.
Service
We can provide custom and standard manufacturing services with multiple manufacturing process integrations. The quality and delivery of products can be fully guaranteed, and the ability to communicate quickly and effectively.
Culture
The unique corporate culture can give full play to the potential of individuals and provide a strong vitality for the sustainable development of the company.
Social responsibility
Our company strictly implements low-carbon environmental protection, energy-saving and emission-reduction production, and is a benchmark enterprise in local region.
6
Company Culture
Our Vision
To become 1 of the leading companies
Our Mission
To become a platform for employees to realize their dream
To become 1 of the transforming and upgrading pacemaker of Chinese enterprises
To set the national brands with pride
Our Belief
Strive to build the company into an ideal platform for entrepreneurs to realize their self-worth and contribute to the society
Values
Improvement is innovation, everyone can innovate
innovation inspired and failures tolerated
7
FAQ
1.
Q: Are you a trading company or a manufacturer?
A: Obviously we are a manufacturer of forging products, casting products and also have a high level of machining capabilities.
2.
Q: What series products do your have?
A: We are mainly engaged in forming processing of ferrous metals, including processing by casting , forging and machining. As you know, such machinery parts can be observed in various industries of equipment manufacturing.
3
Q: Do you provide samples? is it free?
A: Yes, we commonly provide samples according to the traditional practice, but we also need customers to provide a freight pay-by-account number to show mutual sincerity of cooperation.
4
Q: Is OEM available?
A: Yes, OEM is available.
5
Q: What’s your quality guarantee?
A: We insist that the survival of the company should depend on the products quality continuous improvement, without which we cannot survive for long. We carry out strictly product quality control for every process from incoming materials, production process to finished products via advanced detection instrument and equipment. We also invite independent third parties to certify our quality and management systems. Till now we have passed ISO/TS16949 and SGS certification .
6
Q. How about the Packing?
A: We usually use the iron box, or wooden case, also it can be customized according to customer’s demands.
7
Q: What is your minimum order quantity?
A: Yes, we require all international orders to have an minimum order quantity. The quantity is up to the exact products feature or property such as the material, weight, construction etc.
8
Q: What is the lead time?
A: Generally our forging products and casting products need to make new dies or molds, the time of making new dies or molds and samples within 30-45 days, and the large batch production time within 30-45 days. it’s also according to the parts structural complexity and quantity.
9
Q: What kinds of payment methods do you accept?
A: You can make the payment by T/T or L/C. 30% deposit in advance, 70% balance against the copy of B/L.
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Processing Object: | Metal |
---|---|
Molding Style: | Forging |
Molding Technics: | Pressure Casting |
Application: | Agricultural Machinery Parts |
Material: | Steel |
Heat Treatment: | Tempering |
Samples: |
US$ 30/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
| Customized Request |
---|
What steps are involved in the proper removal and installation of an axle hub assembly?
Properly removing and installing an axle hub assembly requires a systematic approach and the use of appropriate tools. Here are the detailed steps involved in the process:
- Gather the necessary tools: Before starting the removal and installation process, gather the required tools and equipment. This may include a jack, jack stands, lug wrench, socket set, torque wrench, pry bar, hammer, and a suitable wheel bearing grease.
- Prepare the vehicle: Park the vehicle on a flat surface and engage the parking brake. If necessary, loosen the lug nuts on the wheel associated with the axle hub assembly, but do not remove them yet.
- Jack up the vehicle: Use a jack to lift the vehicle off the ground at a suitable jacking point. Place jack stands under the vehicle to provide additional support and ensure safety. Carefully lower the vehicle onto the jack stands.
- Remove the wheel: Completely remove the lug nuts and take off the wheel to access the axle hub assembly.
- Disconnect brake components: Depending on the specific vehicle, there may be brake components attached to the axle hub assembly. This can include brake calipers, brake pads, and brake rotors. Follow the appropriate procedure to disconnect these components, which may involve removing caliper bolts, brake pad retaining clips, or rotor retaining screws.
- Disconnect the axle: If the axle shaft is connected to the axle hub assembly, disconnect it by removing the retaining nut or bolts. This step may vary depending on the type of axle and vehicle.
- Remove the axle hub assembly: The axle hub assembly is typically secured to the steering knuckle or suspension component by bolts or studs. Use the appropriate tools to remove these fasteners and carefully detach the axle hub assembly from the vehicle. In some cases, the assembly may be tight and require the use of a pry bar or hammer to gently separate it from the mounting point.
- Clean and inspect: Once the axle hub assembly is removed, clean the mounting surface on the steering knuckle or suspension component. Inspect the mounting area for any damage or corrosion that may affect the installation of the new axle hub assembly. Also, inspect the axle shaft and surrounding components for any signs of damage or wear.
- Install the new axle hub assembly: Apply a thin layer of wheel bearing grease to the mounting surface of the steering knuckle or suspension component. Carefully align the new axle hub assembly with the mounting holes and slide it into place. Install the bolts or studs and tighten them according to the manufacturer’s specifications. If there are any retaining nuts or bolts for the axle shaft, reinstall them and torque them to the recommended values.
- Reconnect brake components: Reinstall any brake components that were disconnected, such as brake calipers, brake pads, and brake rotors. Make sure to follow the correct procedure and torque specifications for these components.
- Reinstall the wheel: Put the wheel back onto the vehicle and hand-tighten the lug nuts. Lower the vehicle from the jack stands using a jack, and then use a torque wrench to tighten the lug nuts to the manufacturer’s recommended torque specification.
- Test and verify: Once the axle hub assembly is installed and all components are properly reconnected, take the vehicle for a test drive. Pay attention to any unusual noises, vibrations, or handling issues. Verify that the axle hub assembly is functioning correctly and that there are no leaks or other problems.
It’s important to note that the specific steps and procedures may vary depending on the vehicle make and model. Always consult the vehicle’s service manual or seek professional assistance if you are unsure about any aspect of the removal and installation process.
In summary, the proper removal and installation of an axle hub assembly involve gathering the necessary tools, preparing the vehicle, jacking up the vehicle, removing the wheel, disconnecting brake components and the axle, removing the old axle hub assembly, cleaning and inspecting, installing the new assembly, reconnecting brake components, reinstalling the wheel, and finally testing and verifying the functionality of the axle hub assembly.
Can a worn or damaged wheel bearing impact the performance of an axle hub?
Yes, a worn or damaged wheel bearing can significantly impact the performance of an axle hub. The wheel bearing plays a crucial role in supporting the weight of the vehicle and allowing the wheels to rotate smoothly. Here’s a detailed explanation of how a worn or damaged wheel bearing can affect the performance of an axle hub:
- Wheel rotation: The axle hub, along with the wheel bearing, enables the smooth rotation of the wheel. When the wheel bearing is worn or damaged, it can cause irregular or uneven rotation of the wheel. This can result in vibrations, noise, and an overall rough ride quality.
- Excessive play: A worn wheel bearing may develop excessive play or looseness. This can cause the wheel to wobble or have noticeable movement when jacked up or when driving. Excessive play in the wheel bearing can affect the vehicle’s stability, handling, and control, making it more difficult to steer accurately.
- Noise: Worn or damaged wheel bearings often produce noticeable noise. The noise can vary from a low humming or rumbling sound to a high-pitched whining or grinding noise. The noise may become more pronounced when turning or when the vehicle is under load. Ignoring the noise and continuing to drive with a faulty wheel bearing can lead to further damage and potential safety hazards.
- Heat buildup: A damaged wheel bearing may generate excessive heat due to increased friction and inadequate lubrication. The heat buildup can cause the bearing to expand, leading to further damage and potential failure. Overheated wheel bearings can contribute to premature wear of other components within the axle hub assembly, such as the axle shaft or hub assembly itself.
- Uneven tire wear: A worn or damaged wheel bearing can result in uneven tire wear. As the wheel doesn’t rotate properly or experiences excessive play, it can cause the tire to wear unevenly. This can lead to premature tire wear on specific areas of the tread, affecting the tire’s performance, lifespan, and overall safety.
- Reduced fuel efficiency: When a wheel bearing is damaged or worn, it can create additional resistance and drag on the wheel. This increased rolling resistance can have a negative impact on fuel efficiency, causing the vehicle to consume more fuel to maintain speed and overcome the additional resistance. Thus, a faulty wheel bearing can lead to decreased fuel efficiency and increased operating costs.
It’s important to address any signs of a worn or damaged wheel bearing promptly. If you suspect a problem with the wheel bearing or experience any of the symptoms mentioned above, it is recommended to have the vehicle inspected by a qualified mechanic or automotive technician. They can assess the condition of the wheel bearing and perform the necessary repairs or replacement to restore the proper performance of the axle hub and ensure safe operation of the vehicle.
In summary, a worn or damaged wheel bearing can have a significant impact on the performance of an axle hub. It can affect wheel rotation, cause excessive play, produce noise, lead to heat buildup, result in uneven tire wear, and reduce fuel efficiency. Prompt inspection and necessary repairs or replacement of a faulty wheel bearing are essential to maintain the optimal performance and safety of the axle hub.
How do changes in wheel offset affect the angles and performance of axle hubs?
Changes in wheel offset can have a significant impact on the angles and performance of axle hubs. Here’s a detailed explanation:
Wheel offset refers to the distance between the centerline of the wheel and the mounting surface. It determines how far the wheel and tire assembly will be positioned in relation to the axle hub. There are three types of wheel offsets: positive offset, zero offset, and negative offset.
Here’s how changes in wheel offset can affect the angles and performance of axle hubs:
- Camber Angle: Camber angle refers to the inward or outward tilt of the wheel when viewed from the front of the vehicle. Changes in wheel offset can impact the camber angle. Increasing positive offset or reducing negative offset typically results in more positive camber, while increasing negative offset or reducing positive offset leads to more negative camber. Improper camber angle can cause uneven tire wear, reduced traction, and handling issues.
- Track Width: Wheel offset affects the track width, which is the distance between the centerlines of the left and right wheels. Wider track width can improve stability and cornering performance. Increasing positive offset or reducing negative offset generally widens the track width, while increasing negative offset or reducing positive offset narrows it.
- Steering Geometry: Changes in wheel offset also impact the steering geometry of the vehicle. Altering the offset can affect the scrub radius, which is the distance between the tire contact patch and the steering axis. Changes in scrub radius can influence steering effort, feedback, and stability. It’s important to maintain the appropriate scrub radius for optimal handling and performance.
- Wheel Bearing Load: Wheel offset affects the load applied to the wheel bearings. Increasing positive offset or reducing negative offset generally increases the load on the inner wheel bearing, while increasing negative offset or reducing positive offset increases the load on the outer wheel bearing. Proper wheel bearing load is crucial for their longevity and performance.
- Clearance and Interference: Changes in wheel offset can also impact the clearance between the wheel and suspension components or bodywork. Insufficient clearance due to excessive positive offset or inadequate clearance due to excessive negative offset can lead to rubbing, interference, or potential damage to the axle hub, suspension parts, or bodywork.
It’s important to note that any changes in wheel offset should be done within the manufacturer’s recommended specifications or in consultation with knowledgeable professionals. Deviating from the recommended wheel offset can lead to adverse effects on the axle hub angles and performance, as well as other aspects of the vehicle’s handling and safety.
When modifying wheel offset, it is crucial to consider the overall impact on the vehicle’s suspension geometry, clearance, and alignment. It may be necessary to make corresponding adjustments to maintain proper alignment angles, such as camber, toe, and caster, to ensure optimal tire wear, handling, and performance.
In summary, changes in wheel offset can have a significant impact on the angles and performance of axle hubs. They can affect camber angles, track width, steering geometry, wheel bearing load, and clearance. It is important to adhere to manufacturer’s specifications and consult with knowledgeable professionals when considering changes in wheel offset to ensure proper alignment, optimal performance, and safe operation of the vehicle.
editor by CX 2024-02-06
China wholesaler Agricultural Tractor Hot Forging Parts Accessories Forged Alloy Steel Axle Wheel Hub bent axle
Product Description
1
Product:
Name: Agricultural tractor hot forging parts accessories forged alloy steel axle wheel hub
Material: 42CrMo
Processing: die forging
Surface treatment: Sand blast
Weight: From .1kg-20kg
Packing: Standard Export Packing
Min order: 1000pcs
Standard: JIS, DIN, ASTM, GB
Customized production is available as your drawings or sample.
Process | Die Forging | ||||||
Material | Stainless Steel, Carbon Steel, Alloy Steel | ||||||
Weight | 1Kg~20Kg | ||||||
Heat Treatment | Quenching, Annealing,Tempering,Normalizing, Quenching and Tempering | ||||||
Testing instrument | composition testing | Spectrometer, Metallographic microscope | |||||
Performance testing | Hardness tester, Tensile testing machine | ||||||
Size Measuring | CMM,Micrometer, Vernier Caliper, Depth Caliper, feeler gauge | ||||||
Thread Gauge , Height Gauge | |||||||
Roughness | Ra1.6~Ra6.3 | ||||||
Machining Equipment | CNC Center , CNC Machines, Turning, Drilling, Milling, boring machine,Grinding Machines, | ||||||
Wire EDM,Laser Cutting&Welding, Plasma Cutting &Welding, EDM etc. | |||||||
Quality control | Sampling inspection of raw materials and semi-finished products, 100% Inspection of finished products | ||||||
Surface Treatment | Shot Blast , Powder Coating, Polishing, Galvanized , Chrome Plated | ||||||
60000T / Years | |||||||
Lead Time | Normally 30 – 45 Days. | ||||||
Payment Terms | T/T , L/C | ||||||
Material Standard | ASTM , AISI , DIN , BS, JIS, GB, | ||||||
Certification | ISO9001:2008, IATF16949:2016 |
2
Products Quality Control
Quality control involve the inspection and control of incoming materials, production processes, and finished products.
The quality control process includes,
1 First of all, the incoming raw materials with random sampling are analyzed by metallographic microscope to ensure that the chemical composition meets the production requirements
2 Then In the production process, there are QC staffs timely sampling ensure that the products are free of defects in the manufacturing process, and to coordinate and handle any abnormal quality issues may be occurred.
3 The final step of production process is magnetic particle flaw detector of the metal parts to detect it’s hidden crack or other defects.
4 All the finished metal parts is sampled in proportion and sent to the laboratory for various mechanical performance tests and size measurement, and the surface quality is manually 100% inspected.
The relevant testing equipment pictures are as following:
3
Quality Management System Control:
We strictly carry out system management accordance with iso9001 and ts16949 quality standards. And 5S lean production management is implemented on the production site.
The production management site as following:
4
Company profile
Establis5hed in 2018, HiHangZhou Precision Forging Technology Co., Ltd. is 1 of the subsidiaries of HiHangZhou Group, a globally recognized enterprise Involved in multiple fields of high-end machine and equipment manufacturing. Our company is the expert in forging ,casting and machining metal application solutions for manufacturing industries.
We provide top-level competitive ferrous metals products and services which are used in the fields of vehicle, rail, power generation, mining and excavation, forestry and agriculture machinery etc. We have passed ISO/TS16949 quality management system certification in 2571 .
HiHangZhou Precision Forging Technology Co., Ltd. pursue the principle of ” try our best to build the company into an ideal platform for all of employees to achieve our value and to contribute to society”, Through the efficient, positive, responsible, open and innovative team, focusing on our customers’ needs, quick response, continuous improvement,meeting the customers’ requirement for quality, cost, delivery and service and striving to exceed our customers’ expectations. We are striving to be a leading forged metal products provider in the industry.
5
Our Advantages:
Brand
Our parent company, HiHangZhou Group, is a world-renowned high-end machinery manufacturing enterprise with 40 domestic subsidiaries and branches and 8 foreign manufacturing plants. Has long-term experience and good reputation in cooperation with world-renowned enterprises.
Technology
We have a complete production process and equipment research and development capabilities for ferrous metals forming. More than 25 years of production experience in forging equipment and casting equipment manufacturers, make us more thoroughly get all the performance of each equipment. One-third of our company’s employees are technician and R&D personnel, ensuring that high-quality products are produced with high efficiency.
Service
We can provide custom and standard manufacturing services with multiple manufacturing process integrations. The quality and delivery of products can be fully guaranteed, and the ability to communicate quickly and effectively.
Culture
The unique corporate culture can give full play to the potential of individuals and provide a strong vitality for the sustainable development of the company.
Social responsibility
Our company strictly implements low-carbon environmental protection, energy-saving and emission-reduction production, and is a benchmark enterprise in local region.
6
Company Culture
Our Vision
To become 1 of the leading companies
Our Mission
To become a platform for employees to realize their dream
To become 1 of the transforming and upgrading pacemaker of Chinese enterprises
To set the national brands with pride
Our Belief
Strive to build the company into an ideal platform for entrepreneurs to realize their self-worth and contribute to the society
Values
Improvement is innovation, everyone can innovate
innovation inspired and failures tolerated
7
FAQ
1.
Q: Are you a trading company or a manufacturer?
A: Obviously we are a manufacturer of forging products, casting products and also have a high level of machining capabilities.
2.
Q: What series products do your have?
A: We are mainly engaged in forming processing of ferrous metals, including processing by casting , forging and machining. As you know, such machinery parts can be observed in various industries of equipment manufacturing.
3
Q: Do you provide samples? is it free?
A: Yes, we commonly provide samples according to the traditional practice, but we also need customers to provide a freight pay-by-account number to show mutual sincerity of cooperation.
4
Q: Is OEM available?
A: Yes, OEM is available.
5
Q: What’s your quality guarantee?
A: We insist that the survival of the company should depend on the products quality continuous improvement, without which we cannot survive for long. We carry out strictly product quality control for every process from incoming materials, production process to finished products via advanced detection instrument and equipment. We also invite independent third parties to certify our quality and management systems. Till now we have passed ISO/TS16949 and SGS certification .
6
Q. How about the Packing?
A: We usually use the iron box, or wooden case, also it can be customized according to customer’s demands.
7
Q: What is your minimum order quantity?
A: Yes, we require all international orders to have an minimum order quantity. The quantity is up to the exact products feature or property such as the material, weight, construction etc.
8
Q: What is the lead time?
A: Generally our forging products and casting products need to make new dies or molds, the time of making new dies or molds and samples within 30-45 days, and the large batch production time within 30-45 days. it’s also according to the parts structural complexity and quantity.
9
Q: What kinds of payment methods do you accept?
A: You can make the payment by T/T or L/C. 30% deposit in advance, 70% balance against the copy of B/L.
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Processing Object: | Metal |
---|---|
Molding Style: | Forging |
Molding Technics: | Pressure Casting |
Application: | Agricultural Machinery Parts |
Material: | Steel |
Heat Treatment: | Tempering |
Samples: |
US$ 30/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
| Customized Request |
---|
What are the common symptoms of a failing axle hub, and how can they be identified?
Identifying the common symptoms of a failing axle hub is crucial for timely diagnosis and repair. Here’s a detailed explanation of the common symptoms and how they can be identified:
1. Wheel Vibrations:
One of the common symptoms of a failing axle hub is noticeable wheel vibrations. As the hub becomes worn or damaged, it may cause the wheel to wobble or shake while driving. These vibrations can be felt through the steering wheel, floorboard, or seat. To identify this symptom, pay attention to any unusual vibrations that occur, especially at higher speeds.
2. Grinding or Growling Noises:
A failing axle hub can produce grinding or growling noises. This can be an indication of worn-out or damaged wheel bearings within the hub. The noise may vary in intensity, and it is often more pronounced during turns or when the vehicle is in motion. To identify this symptom, listen for any unusual grinding or growling sounds coming from the wheels while driving.
3. Wheel Play or Looseness:
A failing axle hub can result in wheel play or looseness. When the hub is damaged or worn, it may not provide a secure mounting point for the wheel. As a result, the wheel may have excessive play or feel loose when you attempt to wiggle it by hand. To identify this symptom, jack up the vehicle and try to move the wheel in different directions to check for any abnormal movement.
4. Uneven Tire Wear:
A failing axle hub can contribute to uneven tire wear. If the hub is damaged, it can affect the alignment and cause the tire to wear unevenly. Look for signs of abnormal tire wear, such as excessive wear on one side of the tire or feathering patterns. Uneven tire wear may also be accompanied by other symptoms, such as vibrations or pulling to one side while driving.
5. ABS Warning Light:
In some cases, a failing axle hub can trigger the ABS (Anti-lock Braking System) warning light on the vehicle’s dashboard. This can occur if there is a problem with the wheel speed sensor, which is often integrated into the hub assembly. The ABS warning light indicates a fault in the braking system and should be diagnosed using a diagnostic tool by a qualified technician.
6. Visual Inspection:
A visual inspection can also help identify signs of a failing axle hub. Look for any visible damage or wear on the hub, such as cracks, corrosion, or bent flanges. Additionally, check for any leaking grease around the hub or signs of excessive heat, which can indicate bearing failure.
7. Professional Diagnosis:
If you suspect a failing axle hub but are unsure, it is recommended to have the vehicle inspected by a qualified mechanic. They can perform a comprehensive examination of the wheel assembly, including the hub, bearings, and associated components. They may use specialized tools and equipment to measure wheel play, check for bearing wear, and assess the overall condition of the hub.
In summary, common symptoms of a failing axle hub include wheel vibrations, grinding or growling noises, wheel play or looseness, uneven tire wear, ABS warning light activation, and visible damage. It is essential to pay attention to these symptoms and seek professional diagnosis and repair to prevent further damage and ensure the safe operation of the vehicle.
Can a worn or damaged wheel bearing impact the performance of an axle hub?
Yes, a worn or damaged wheel bearing can significantly impact the performance of an axle hub. The wheel bearing plays a crucial role in supporting the weight of the vehicle and allowing the wheels to rotate smoothly. Here’s a detailed explanation of how a worn or damaged wheel bearing can affect the performance of an axle hub:
- Wheel rotation: The axle hub, along with the wheel bearing, enables the smooth rotation of the wheel. When the wheel bearing is worn or damaged, it can cause irregular or uneven rotation of the wheel. This can result in vibrations, noise, and an overall rough ride quality.
- Excessive play: A worn wheel bearing may develop excessive play or looseness. This can cause the wheel to wobble or have noticeable movement when jacked up or when driving. Excessive play in the wheel bearing can affect the vehicle’s stability, handling, and control, making it more difficult to steer accurately.
- Noise: Worn or damaged wheel bearings often produce noticeable noise. The noise can vary from a low humming or rumbling sound to a high-pitched whining or grinding noise. The noise may become more pronounced when turning or when the vehicle is under load. Ignoring the noise and continuing to drive with a faulty wheel bearing can lead to further damage and potential safety hazards.
- Heat buildup: A damaged wheel bearing may generate excessive heat due to increased friction and inadequate lubrication. The heat buildup can cause the bearing to expand, leading to further damage and potential failure. Overheated wheel bearings can contribute to premature wear of other components within the axle hub assembly, such as the axle shaft or hub assembly itself.
- Uneven tire wear: A worn or damaged wheel bearing can result in uneven tire wear. As the wheel doesn’t rotate properly or experiences excessive play, it can cause the tire to wear unevenly. This can lead to premature tire wear on specific areas of the tread, affecting the tire’s performance, lifespan, and overall safety.
- Reduced fuel efficiency: When a wheel bearing is damaged or worn, it can create additional resistance and drag on the wheel. This increased rolling resistance can have a negative impact on fuel efficiency, causing the vehicle to consume more fuel to maintain speed and overcome the additional resistance. Thus, a faulty wheel bearing can lead to decreased fuel efficiency and increased operating costs.
It’s important to address any signs of a worn or damaged wheel bearing promptly. If you suspect a problem with the wheel bearing or experience any of the symptoms mentioned above, it is recommended to have the vehicle inspected by a qualified mechanic or automotive technician. They can assess the condition of the wheel bearing and perform the necessary repairs or replacement to restore the proper performance of the axle hub and ensure safe operation of the vehicle.
In summary, a worn or damaged wheel bearing can have a significant impact on the performance of an axle hub. It can affect wheel rotation, cause excessive play, produce noise, lead to heat buildup, result in uneven tire wear, and reduce fuel efficiency. Prompt inspection and necessary repairs or replacement of a faulty wheel bearing are essential to maintain the optimal performance and safety of the axle hub.
What are the torque specifications for securing an axle hub to the vehicle?
The torque specifications for securing an axle hub to the vehicle may vary depending on the specific make, model, and year of the vehicle. It is crucial to consult the manufacturer’s service manual or appropriate technical resources for the accurate torque specifications for your particular vehicle. Here’s a detailed explanation:
- Manufacturer’s Service Manual: The manufacturer’s service manual is the most reliable and authoritative source for torque specifications. It provides detailed information specific to your vehicle, including the recommended torque values for various components, such as the axle hub. The service manual may specify different torque values for different vehicle models or configurations. You can usually obtain the manufacturer’s service manual from the vehicle manufacturer’s official website or through authorized dealerships.
- Technical Resources: In addition to the manufacturer’s service manual, there are other technical resources available that provide torque specifications. These resources may include specialized automotive repair guides, online databases, or torque specification charts. Reputable automotive websites, professional repair manuals, or automotive forums dedicated to your vehicle’s make or model can be valuable sources for finding accurate torque specifications.
- Online Databases: Some websites offer online databases or torque specification tools that allow you to search for specific torque values based on your vehicle’s make, model, and year. These databases compile torque specifications from various sources and provide a convenient way to access the required information. However, it’s important to verify the accuracy and reliability of the source before relying on the provided torque values.
- Manufacturer Recommendations: In certain cases, the manufacturer may provide torque specifications on the packaging or documentation that accompanies the replacement axle hub. If you are using an OEM (Original Equipment Manufacturer) or aftermarket axle hub, it is advisable to check any provided documentation for torque recommendations specific to that particular product.
Regardless of the source you use to obtain torque specifications, it is essential to follow the recommended values precisely. Torque specifications are specified to ensure proper tightening and secure attachment of the axle hub to the vehicle. Over-tightening or under-tightening can lead to issues such as damage to components, improper seating, or premature wear. It is recommended to use a reliable torque wrench to achieve the specified torque values accurately.
In summary, the torque specifications for securing an axle hub to the vehicle depend on the specific make, model, and year of the vehicle. The manufacturer’s service manual, technical resources, online databases, and manufacturer recommendations are valuable sources to obtain accurate torque specifications. It is crucial to follow the recommended torque values precisely to ensure proper installation and avoid potential issues.
editor by CX 2024-01-16
China Best Sales Tractor Wheel Hub Assembly Components Drop Forging High Strength Parts Forged Alloy Steel Axle Hub axle api
Product Description
1
Product:
Name: Tractor wheel hub assembly components drop forging high strength parts forged alloy steel axle hub
Material: 42CrMo
Processing: die forging
Surface treatment: Sand blast
Weight: From .1kg-20kg
Packing: Standard Export Packing
Min order: 1000pcs
Standard: JIS, DIN, ASTM, GB
Customized production is available as your drawings or sample.
Process | Die Forging | ||||||
Material | Stainless Steel, Carbon Steel, Alloy Steel | ||||||
Weight | 1Kg~20Kg | ||||||
Heat Treatment | Quenching, Annealing,Tempering,Normalizing, Quenching and Tempering | ||||||
Testing instrument | composition testing | Spectrometer, Metallographic microscope | |||||
Performance testing | Hardness tester, Tensile testing machine | ||||||
Size Measuring | CMM,Micrometer, Vernier Caliper, Depth Caliper, feeler gauge | ||||||
Thread Gauge , Height Gauge | |||||||
Roughness | Ra1.6~Ra6.3 | ||||||
Machining Equipment | CNC Center , CNC Machines, Turning, Drilling, Milling, boring machine,Grinding Machines, | ||||||
Wire EDM,Laser Cutting&Welding, Plasma Cutting &Welding, EDM etc. | |||||||
Quality control | Sampling inspection of raw materials and semi-finished products, 100% Inspection of finished products | ||||||
Surface Treatment | Shot Blast , Powder Coating, Polishing, Galvanized , Chrome Plated | ||||||
60000T / Years | |||||||
Lead Time | Normally 30 – 45 Days. | ||||||
Payment Terms | T/T , L/C | ||||||
Material Standard | ASTM , AISI , DIN , BS, JIS, GB, | ||||||
Certification | ISO9001:2008, IATF16949:2016 |
2
Products Quality Control
Quality control involve the inspection and control of incoming materials, production processes, and finished products.
The quality control process includes,
1 First of all, the incoming raw materials with random sampling are analyzed by metallographic microscope to ensure that the chemical composition meets the production requirements
2 Then In the production process, there are QC staffs timely sampling ensure that the products are free of defects in the manufacturing process, and to coordinate and handle any abnormal quality issues may be occurred.
3 The final step of production process is magnetic particle flaw detector of the metal parts to detect it’s hidden crack or other defects.
4 All the finished metal parts is sampled in proportion and sent to the laboratory for various mechanical performance tests and size measurement, and the surface quality is manually 100% inspected.
The relevant testing equipment pictures are as following:
3
Quality Management System Control:
We strictly carry out system management accordance with iso9001 and ts16949 quality standards. And 5S lean production management is implemented on the production site.
The production management site as following:
4
Company profile
Establis5hed in 2018, HiHangZhou Precision Forging Technology Co., Ltd. is 1 of the subsidiaries of HiHangZhou Group, a globally recognized enterprise Involved in multiple fields of high-end machine and equipment manufacturing. Our company is the expert in forging ,casting and machining metal application solutions for manufacturing industries.
We provide top-level competitive ferrous metals products and services which are used in the fields of vehicle, rail, power generation, mining and excavation, forestry and agriculture machinery etc. We have passed ISO/TS16949 quality management system certification in 2571 .
HiHangZhou Precision Forging Technology Co., Ltd. pursue the principle of ” try our best to build the company into an ideal platform for all of employees to achieve our value and to contribute to society”, Through the efficient, positive, responsible, open and innovative team, focusing on our customers’ needs, quick response, continuous improvement,meeting the customers’ requirement for quality, cost, delivery and service and striving to exceed our customers’ expectations. We are striving to be a leading forged metal products provider in the industry.
5
Our Advantages:
Brand
Our parent company, HiHangZhou Group, is a world-renowned high-end machinery manufacturing enterprise with 40 domestic subsidiaries and branches and 8 foreign manufacturing plants. Has long-term experience and good reputation in cooperation with world-renowned enterprises.
Technology
We have a complete production process and equipment research and development capabilities for ferrous metals forming. More than 25 years of production experience in forging equipment and casting equipment manufacturers, make us more thoroughly get all the performance of each equipment. One-third of our company’s employees are technician and R&D personnel, ensuring that high-quality products are produced with high efficiency.
Service
We can provide custom and standard manufacturing services with multiple manufacturing process integrations. The quality and delivery of products can be fully guaranteed, and the ability to communicate quickly and effectively.
Culture
The unique corporate culture can give full play to the potential of individuals and provide a strong vitality for the sustainable development of the company.
Social responsibility
Our company strictly implements low-carbon environmental protection, energy-saving and emission-reduction production, and is a benchmark enterprise in local region.
6
Company Culture
Our Vision
To become 1 of the leading companies
Our Mission
To become a platform for employees to realize their dream
To become 1 of the transforming and upgrading pacemaker of Chinese enterprises
To set the national brands with pride
Our Belief
Strive to build the company into an ideal platform for entrepreneurs to realize their self-worth and contribute to the society
Values
Improvement is innovation, everyone can innovate
innovation inspired and failures tolerated
7
FAQ
1.
Q: Are you a trading company or a manufacturer?
A: Obviously we are a manufacturer of forging products, casting products and also have a high level of machining capabilities.
2.
Q: What series products do your have?
A: We are mainly engaged in forming processing of ferrous metals, including processing by casting , forging and machining. As you know, such machinery parts can be observed in various industries of equipment manufacturing.
3
Q: Do you provide samples? is it free?
A: Yes, we commonly provide samples according to the traditional practice, but we also need customers to provide a freight pay-by-account number to show mutual sincerity of cooperation.
4
Q: Is OEM available?
A: Yes, OEM is available.
5
Q: What’s your quality guarantee?
A: We insist that the survival of the company should depend on the products quality continuous improvement, without which we cannot survive for long. We carry out strictly product quality control for every process from incoming materials, production process to finished products via advanced detection instrument and equipment. We also invite independent third parties to certify our quality and management systems. Till now we have passed ISO/TS16949 and SGS certification .
6
Q. How about the Packing?
A: We usually use the iron box, or wooden case, also it can be customized according to customer’s demands.
7
Q: What is your minimum order quantity?
A: Yes, we require all international orders to have an minimum order quantity. The quantity is up to the exact products feature or property such as the material, weight, construction etc.
8
Q: What is the lead time?
A: Generally our forging products and casting products need to make new dies or molds, the time of making new dies or molds and samples within 30-45 days, and the large batch production time within 30-45 days. it’s also according to the parts structural complexity and quantity.
9
Q: What kinds of payment methods do you accept?
A: You can make the payment by T/T or L/C. 30% deposit in advance, 70% balance against the copy of B/L.
Processing Object: | Metal |
---|---|
Molding Style: | Forging |
Molding Technics: | Pressure Casting |
Application: | Agricultural Machinery Parts |
Material: | Steel |
Heat Treatment: | Tempering |
Samples: |
US$ 30/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
| Customized Request |
---|
What are the common symptoms of a failing axle hub, and how can they be identified?
Identifying the common symptoms of a failing axle hub is crucial for timely diagnosis and repair. Here’s a detailed explanation of the common symptoms and how they can be identified:
1. Wheel Vibrations:
One of the common symptoms of a failing axle hub is noticeable wheel vibrations. As the hub becomes worn or damaged, it may cause the wheel to wobble or shake while driving. These vibrations can be felt through the steering wheel, floorboard, or seat. To identify this symptom, pay attention to any unusual vibrations that occur, especially at higher speeds.
2. Grinding or Growling Noises:
A failing axle hub can produce grinding or growling noises. This can be an indication of worn-out or damaged wheel bearings within the hub. The noise may vary in intensity, and it is often more pronounced during turns or when the vehicle is in motion. To identify this symptom, listen for any unusual grinding or growling sounds coming from the wheels while driving.
3. Wheel Play or Looseness:
A failing axle hub can result in wheel play or looseness. When the hub is damaged or worn, it may not provide a secure mounting point for the wheel. As a result, the wheel may have excessive play or feel loose when you attempt to wiggle it by hand. To identify this symptom, jack up the vehicle and try to move the wheel in different directions to check for any abnormal movement.
4. Uneven Tire Wear:
A failing axle hub can contribute to uneven tire wear. If the hub is damaged, it can affect the alignment and cause the tire to wear unevenly. Look for signs of abnormal tire wear, such as excessive wear on one side of the tire or feathering patterns. Uneven tire wear may also be accompanied by other symptoms, such as vibrations or pulling to one side while driving.
5. ABS Warning Light:
In some cases, a failing axle hub can trigger the ABS (Anti-lock Braking System) warning light on the vehicle’s dashboard. This can occur if there is a problem with the wheel speed sensor, which is often integrated into the hub assembly. The ABS warning light indicates a fault in the braking system and should be diagnosed using a diagnostic tool by a qualified technician.
6. Visual Inspection:
A visual inspection can also help identify signs of a failing axle hub. Look for any visible damage or wear on the hub, such as cracks, corrosion, or bent flanges. Additionally, check for any leaking grease around the hub or signs of excessive heat, which can indicate bearing failure.
7. Professional Diagnosis:
If you suspect a failing axle hub but are unsure, it is recommended to have the vehicle inspected by a qualified mechanic. They can perform a comprehensive examination of the wheel assembly, including the hub, bearings, and associated components. They may use specialized tools and equipment to measure wheel play, check for bearing wear, and assess the overall condition of the hub.
In summary, common symptoms of a failing axle hub include wheel vibrations, grinding or growling noises, wheel play or looseness, uneven tire wear, ABS warning light activation, and visible damage. It is essential to pay attention to these symptoms and seek professional diagnosis and repair to prevent further damage and ensure the safe operation of the vehicle.
Can a worn or damaged wheel bearing impact the performance of an axle hub?
Yes, a worn or damaged wheel bearing can significantly impact the performance of an axle hub. The wheel bearing plays a crucial role in supporting the weight of the vehicle and allowing the wheels to rotate smoothly. Here’s a detailed explanation of how a worn or damaged wheel bearing can affect the performance of an axle hub:
- Wheel rotation: The axle hub, along with the wheel bearing, enables the smooth rotation of the wheel. When the wheel bearing is worn or damaged, it can cause irregular or uneven rotation of the wheel. This can result in vibrations, noise, and an overall rough ride quality.
- Excessive play: A worn wheel bearing may develop excessive play or looseness. This can cause the wheel to wobble or have noticeable movement when jacked up or when driving. Excessive play in the wheel bearing can affect the vehicle’s stability, handling, and control, making it more difficult to steer accurately.
- Noise: Worn or damaged wheel bearings often produce noticeable noise. The noise can vary from a low humming or rumbling sound to a high-pitched whining or grinding noise. The noise may become more pronounced when turning or when the vehicle is under load. Ignoring the noise and continuing to drive with a faulty wheel bearing can lead to further damage and potential safety hazards.
- Heat buildup: A damaged wheel bearing may generate excessive heat due to increased friction and inadequate lubrication. The heat buildup can cause the bearing to expand, leading to further damage and potential failure. Overheated wheel bearings can contribute to premature wear of other components within the axle hub assembly, such as the axle shaft or hub assembly itself.
- Uneven tire wear: A worn or damaged wheel bearing can result in uneven tire wear. As the wheel doesn’t rotate properly or experiences excessive play, it can cause the tire to wear unevenly. This can lead to premature tire wear on specific areas of the tread, affecting the tire’s performance, lifespan, and overall safety.
- Reduced fuel efficiency: When a wheel bearing is damaged or worn, it can create additional resistance and drag on the wheel. This increased rolling resistance can have a negative impact on fuel efficiency, causing the vehicle to consume more fuel to maintain speed and overcome the additional resistance. Thus, a faulty wheel bearing can lead to decreased fuel efficiency and increased operating costs.
It’s important to address any signs of a worn or damaged wheel bearing promptly. If you suspect a problem with the wheel bearing or experience any of the symptoms mentioned above, it is recommended to have the vehicle inspected by a qualified mechanic or automotive technician. They can assess the condition of the wheel bearing and perform the necessary repairs or replacement to restore the proper performance of the axle hub and ensure safe operation of the vehicle.
In summary, a worn or damaged wheel bearing can have a significant impact on the performance of an axle hub. It can affect wheel rotation, cause excessive play, produce noise, lead to heat buildup, result in uneven tire wear, and reduce fuel efficiency. Prompt inspection and necessary repairs or replacement of a faulty wheel bearing are essential to maintain the optimal performance and safety of the axle hub.
Can axle hubs be upgraded for better performance, and if so, how?
Axle hubs can be upgraded to improve performance in certain cases. Upgrading axle hubs can involve various modifications and enhancements. Here’s a detailed explanation:
Before considering an upgrade, it’s important to evaluate the specific needs and goals for the vehicle. Upgrades to axle hubs can target areas such as durability, load capacity, handling, and overall performance. Here are some potential ways to upgrade axle hubs:
- High-Performance Bearings: Upgrading to high-performance wheel bearings can improve the durability and load capacity of the axle hub. High-quality bearings made from stronger materials or featuring advanced designs can provide enhanced reliability and performance under demanding conditions.
- Performance Seals: Upgraded seals can provide better protection against contaminants and improve the overall sealing performance of the axle hub. Enhanced seals can help prevent dirt, water, and other debris from entering the hub assembly, increasing its lifespan and reducing the risk of damage.
- Reinforced Hub Components: In some cases, upgrading to axle hubs with reinforced components, such as stronger hub bodies or larger studs, can enhance their load-carrying capacity and overall strength. This can be particularly beneficial for vehicles that operate under heavy loads or encounter rugged terrain.
- Improved Cooling: Upgrading the cooling system of the axle hub can help dissipate heat more effectively, reducing the risk of overheating and prolonging the lifespan of the hub components. This can involve the addition of cooling fins, better ventilation, or even the use of aftermarket cooling solutions.
- Performance Coatings: Applying specialized coatings to the axle hub surfaces can provide better protection against corrosion and wear. Coatings such as zinc plating or ceramic coatings can enhance the durability and performance of the hub components, particularly in harsh environments.
- Aftermarket Axle Hub Assemblies: In some cases, aftermarket axle hub assemblies can offer performance-oriented upgrades over stock components. These assemblies may incorporate design improvements, advanced materials, or specialized features to enhance performance, reliability, and overall functionality.
It’s important to note that axle hub upgrades may require careful consideration of compatibility with other vehicle components, such as brakes, wheels, and suspension. Additionally, some upgrades may affect the vehicle’s warranty or require professional installation. It is recommended to consult with knowledgeable professionals, such as mechanics or specialists, who can provide guidance on suitable upgrades and ensure proper installation.
When considering axle hub upgrades, it’s also essential to assess the overall condition of the vehicle and address any underlying issues. Regular maintenance, such as proper lubrication, inspection, and timely replacement of worn components, is crucial for maximizing the performance and lifespan of the axle hubs.
In summary, axle hubs can be upgraded to improve performance in certain cases. Upgrades may involve high-performance bearings, improved seals, reinforced hub components, enhanced cooling, performance coatings, or aftermarket axle hub assemblies. It’s important to assess the specific needs of the vehicle, consult with professionals, and consider compatibility with other components when pursuing axle hub upgrades.
editor by CX 2023-12-06
China wholesaler Tractor Wheel Hub Assembly Components Drop Forging High Strength Parts Forged Alloy Steel Axle Hub axle alignment cost
Product Description
1
Product:
Name: Tractor wheel hub assembly components drop forging high strength parts forged alloy steel axle hub
Material: 42CrMo
Processing: die forging
Surface treatment: Sand blast
Weight: From .1kg-20kg
Packing: Standard Export Packing
Min order: 1000pcs
Standard: JIS, DIN, ASTM, GB
Customized production is available as your drawings or sample.
Process | Die Forging | ||||||
Material | Stainless Steel, Carbon Steel, Alloy Steel | ||||||
Weight | 1Kg~20Kg | ||||||
Heat Treatment | Quenching, Annealing,Tempering,Normalizing, Quenching and Tempering | ||||||
Testing instrument | composition testing | Spectrometer, Metallographic microscope | |||||
Performance testing | Hardness tester, Tensile testing machine | ||||||
Size Measuring | CMM,Micrometer, Vernier Caliper, Depth Caliper, feeler gauge | ||||||
Thread Gauge , Height Gauge | |||||||
Roughness | Ra1.6~Ra6.3 | ||||||
Machining Equipment | CNC Center , CNC Machines, Turning, Drilling, Milling, boring machine,Grinding Machines, | ||||||
Wire EDM,Laser Cutting&Welding, Plasma Cutting &Welding, EDM etc. | |||||||
Quality control | Sampling inspection of raw materials and semi-finished products, 100% Inspection of finished products | ||||||
Surface Treatment | Shot Blast , Powder Coating, Polishing, Galvanized , Chrome Plated | ||||||
60000T / Years | |||||||
Lead Time | Normally 30 – 45 Days. | ||||||
Payment Terms | T/T , L/C | ||||||
Material Standard | ASTM , AISI , DIN , BS, JIS, GB, | ||||||
Certification | ISO9001:2008, IATF16949:2016 |
2
Products Quality Control
Quality control involve the inspection and control of incoming materials, production processes, and finished products.
The quality control process includes,
1 First of all, the incoming raw materials with random sampling are analyzed by metallographic microscope to ensure that the chemical composition meets the production requirements
2 Then In the production process, there are QC staffs timely sampling ensure that the products are free of defects in the manufacturing process, and to coordinate and handle any abnormal quality issues may be occurred.
3 The final step of production process is magnetic particle flaw detector of the metal parts to detect it’s hidden crack or other defects.
4 All the finished metal parts is sampled in proportion and sent to the laboratory for various mechanical performance tests and size measurement, and the surface quality is manually 100% inspected.
The relevant testing equipment pictures are as following:
3
Quality Management System Control:
We strictly carry out system management accordance with iso9001 and ts16949 quality standards. And 5S lean production management is implemented on the production site.
The production management site as following:
4
Company profile
Establis5hed in 2018, HiHangZhou Precision Forging Technology Co., Ltd. is 1 of the subsidiaries of HiHangZhou Group, a globally recognized enterprise Involved in multiple fields of high-end machine and equipment manufacturing. Our company is the expert in forging ,casting and machining metal application solutions for manufacturing industries.
We provide top-level competitive ferrous metals products and services which are used in the fields of vehicle, rail, power generation, mining and excavation, forestry and agriculture machinery etc. We have passed ISO/TS16949 quality management system certification in 2571 .
HiHangZhou Precision Forging Technology Co., Ltd. pursue the principle of ” try our best to build the company into an ideal platform for all of employees to achieve our value and to contribute to society”, Through the efficient, positive, responsible, open and innovative team, focusing on our customers’ needs, quick response, continuous improvement,meeting the customers’ requirement for quality, cost, delivery and service and striving to exceed our customers’ expectations. We are striving to be a leading forged metal products provider in the industry.
5
Our Advantages:
Brand
Our parent company, HiHangZhou Group, is a world-renowned high-end machinery manufacturing enterprise with 40 domestic subsidiaries and branches and 8 foreign manufacturing plants. Has long-term experience and good reputation in cooperation with world-renowned enterprises.
Technology
We have a complete production process and equipment research and development capabilities for ferrous metals forming. More than 25 years of production experience in forging equipment and casting equipment manufacturers, make us more thoroughly get all the performance of each equipment. One-third of our company’s employees are technician and R&D personnel, ensuring that high-quality products are produced with high efficiency.
Service
We can provide custom and standard manufacturing services with multiple manufacturing process integrations. The quality and delivery of products can be fully guaranteed, and the ability to communicate quickly and effectively.
Culture
The unique corporate culture can give full play to the potential of individuals and provide a strong vitality for the sustainable development of the company.
Social responsibility
Our company strictly implements low-carbon environmental protection, energy-saving and emission-reduction production, and is a benchmark enterprise in local region.
6
Company Culture
Our Vision
To become 1 of the leading companies
Our Mission
To become a platform for employees to realize their dream
To become 1 of the transforming and upgrading pacemaker of Chinese enterprises
To set the national brands with pride
Our Belief
Strive to build the company into an ideal platform for entrepreneurs to realize their self-worth and contribute to the society
Values
Improvement is innovation, everyone can innovate
innovation inspired and failures tolerated
7
FAQ
1.
Q: Are you a trading company or a manufacturer?
A: Obviously we are a manufacturer of forging products, casting products and also have a high level of machining capabilities.
2.
Q: What series products do your have?
A: We are mainly engaged in forming processing of ferrous metals, including processing by casting , forging and machining. As you know, such machinery parts can be observed in various industries of equipment manufacturing.
3
Q: Do you provide samples? is it free?
A: Yes, we commonly provide samples according to the traditional practice, but we also need customers to provide a freight pay-by-account number to show mutual sincerity of cooperation.
4
Q: Is OEM available?
A: Yes, OEM is available.
5
Q: What’s your quality guarantee?
A: We insist that the survival of the company should depend on the products quality continuous improvement, without which we cannot survive for long. We carry out strictly product quality control for every process from incoming materials, production process to finished products via advanced detection instrument and equipment. We also invite independent third parties to certify our quality and management systems. Till now we have passed ISO/TS16949 and SGS certification .
6
Q. How about the Packing?
A: We usually use the iron box, or wooden case, also it can be customized according to customer’s demands.
7
Q: What is your minimum order quantity?
A: Yes, we require all international orders to have an minimum order quantity. The quantity is up to the exact products feature or property such as the material, weight, construction etc.
8
Q: What is the lead time?
A: Generally our forging products and casting products need to make new dies or molds, the time of making new dies or molds and samples within 30-45 days, and the large batch production time within 30-45 days. it’s also according to the parts structural complexity and quantity.
9
Q: What kinds of payment methods do you accept?
A: You can make the payment by T/T or L/C. 30% deposit in advance, 70% balance against the copy of B/L.
Processing Object: | Metal |
---|---|
Molding Style: | Forging |
Molding Technics: | Pressure Casting |
Application: | Agricultural Machinery Parts |
Material: | Steel |
Heat Treatment: | Tempering |
Samples: |
US$ 30/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
| Customized Request |
---|
What are the common symptoms of a failing axle hub, and how can they be identified?
Identifying the common symptoms of a failing axle hub is crucial for timely diagnosis and repair. Here’s a detailed explanation of the common symptoms and how they can be identified:
1. Wheel Vibrations:
One of the common symptoms of a failing axle hub is noticeable wheel vibrations. As the hub becomes worn or damaged, it may cause the wheel to wobble or shake while driving. These vibrations can be felt through the steering wheel, floorboard, or seat. To identify this symptom, pay attention to any unusual vibrations that occur, especially at higher speeds.
2. Grinding or Growling Noises:
A failing axle hub can produce grinding or growling noises. This can be an indication of worn-out or damaged wheel bearings within the hub. The noise may vary in intensity, and it is often more pronounced during turns or when the vehicle is in motion. To identify this symptom, listen for any unusual grinding or growling sounds coming from the wheels while driving.
3. Wheel Play or Looseness:
A failing axle hub can result in wheel play or looseness. When the hub is damaged or worn, it may not provide a secure mounting point for the wheel. As a result, the wheel may have excessive play or feel loose when you attempt to wiggle it by hand. To identify this symptom, jack up the vehicle and try to move the wheel in different directions to check for any abnormal movement.
4. Uneven Tire Wear:
A failing axle hub can contribute to uneven tire wear. If the hub is damaged, it can affect the alignment and cause the tire to wear unevenly. Look for signs of abnormal tire wear, such as excessive wear on one side of the tire or feathering patterns. Uneven tire wear may also be accompanied by other symptoms, such as vibrations or pulling to one side while driving.
5. ABS Warning Light:
In some cases, a failing axle hub can trigger the ABS (Anti-lock Braking System) warning light on the vehicle’s dashboard. This can occur if there is a problem with the wheel speed sensor, which is often integrated into the hub assembly. The ABS warning light indicates a fault in the braking system and should be diagnosed using a diagnostic tool by a qualified technician.
6. Visual Inspection:
A visual inspection can also help identify signs of a failing axle hub. Look for any visible damage or wear on the hub, such as cracks, corrosion, or bent flanges. Additionally, check for any leaking grease around the hub or signs of excessive heat, which can indicate bearing failure.
7. Professional Diagnosis:
If you suspect a failing axle hub but are unsure, it is recommended to have the vehicle inspected by a qualified mechanic. They can perform a comprehensive examination of the wheel assembly, including the hub, bearings, and associated components. They may use specialized tools and equipment to measure wheel play, check for bearing wear, and assess the overall condition of the hub.
In summary, common symptoms of a failing axle hub include wheel vibrations, grinding or growling noises, wheel play or looseness, uneven tire wear, ABS warning light activation, and visible damage. It is essential to pay attention to these symptoms and seek professional diagnosis and repair to prevent further damage and ensure the safe operation of the vehicle.
Are there specific tools required for DIY axle hub replacement, and where can I find them?
When undertaking a DIY axle hub replacement, certain tools are needed to ensure a smooth and successful process. Here are some specific tools that are commonly required for DIY axle hub replacement and where you can find them:
- Jack and jack stands: These tools are essential for raising the vehicle off the ground and providing a stable support system. You can find jacks and jack stands at automotive supply stores, hardware stores, and online retailers.
- Lug wrench or socket set: A lug wrench or a socket set with the appropriate size socket is necessary to loosen and tighten the lug nuts on the wheel. These tools are commonly available at automotive supply stores, hardware stores, and online retailers.
- Torque wrench: A torque wrench is required to tighten the lug nuts on the wheel and other fasteners to the manufacturer’s recommended torque specifications. Torque wrenches can be found at automotive supply stores, tool stores, and online retailers.
- Pry bar: A pry bar is useful for gently separating the axle hub assembly from the mounting point, especially if it is tightly secured. Pry bars are available at automotive supply stores, hardware stores, and online retailers.
- Hammer: A hammer can be used to tap or lightly strike the axle hub assembly or its components for removal or installation. Hammers are commonly available at hardware stores, tool stores, and online retailers.
- Wheel bearing grease: High-quality wheel bearing grease is necessary for lubricating the axle hub assembly and ensuring smooth operation. Wheel bearing grease can be purchased at automotive supply stores, lubricant suppliers, and online retailers.
- Additional tools: Depending on the specific vehicle and axle hub assembly, you may require additional tools such as a socket set, wrenches, pliers, or specific specialty tools. Consult the vehicle’s service manual or online resources for the specific tools needed for your vehicle model.
To find these tools, you can visit local automotive supply stores, hardware stores, or tool stores in your area. They typically carry a wide range of automotive tools and equipment. Alternatively, you can explore online retailers that specialize in automotive tools and equipment, where you can conveniently browse and purchase the tools you need.
It’s important to ensure that the tools you acquire are of good quality and suitable for the task at hand. Investing in quality tools can make the DIY axle hub replacement process more efficient and help achieve better results. Additionally, always follow the manufacturer’s instructions and safety guidelines when using tools and equipment.
In summary, specific tools are required for DIY axle hub replacement, such as a jack and jack stands, lug wrench or socket set, torque wrench, pry bar, hammer, and wheel bearing grease. These tools can be found at automotive supply stores, hardware stores, tool stores, and online retailers. Acquiring quality tools and following proper safety guidelines will contribute to a successful DIY axle hub replacement.
Can axle hubs be upgraded for better performance, and if so, how?
Axle hubs can be upgraded to improve performance in certain cases. Upgrading axle hubs can involve various modifications and enhancements. Here’s a detailed explanation:
Before considering an upgrade, it’s important to evaluate the specific needs and goals for the vehicle. Upgrades to axle hubs can target areas such as durability, load capacity, handling, and overall performance. Here are some potential ways to upgrade axle hubs:
- High-Performance Bearings: Upgrading to high-performance wheel bearings can improve the durability and load capacity of the axle hub. High-quality bearings made from stronger materials or featuring advanced designs can provide enhanced reliability and performance under demanding conditions.
- Performance Seals: Upgraded seals can provide better protection against contaminants and improve the overall sealing performance of the axle hub. Enhanced seals can help prevent dirt, water, and other debris from entering the hub assembly, increasing its lifespan and reducing the risk of damage.
- Reinforced Hub Components: In some cases, upgrading to axle hubs with reinforced components, such as stronger hub bodies or larger studs, can enhance their load-carrying capacity and overall strength. This can be particularly beneficial for vehicles that operate under heavy loads or encounter rugged terrain.
- Improved Cooling: Upgrading the cooling system of the axle hub can help dissipate heat more effectively, reducing the risk of overheating and prolonging the lifespan of the hub components. This can involve the addition of cooling fins, better ventilation, or even the use of aftermarket cooling solutions.
- Performance Coatings: Applying specialized coatings to the axle hub surfaces can provide better protection against corrosion and wear. Coatings such as zinc plating or ceramic coatings can enhance the durability and performance of the hub components, particularly in harsh environments.
- Aftermarket Axle Hub Assemblies: In some cases, aftermarket axle hub assemblies can offer performance-oriented upgrades over stock components. These assemblies may incorporate design improvements, advanced materials, or specialized features to enhance performance, reliability, and overall functionality.
It’s important to note that axle hub upgrades may require careful consideration of compatibility with other vehicle components, such as brakes, wheels, and suspension. Additionally, some upgrades may affect the vehicle’s warranty or require professional installation. It is recommended to consult with knowledgeable professionals, such as mechanics or specialists, who can provide guidance on suitable upgrades and ensure proper installation.
When considering axle hub upgrades, it’s also essential to assess the overall condition of the vehicle and address any underlying issues. Regular maintenance, such as proper lubrication, inspection, and timely replacement of worn components, is crucial for maximizing the performance and lifespan of the axle hubs.
In summary, axle hubs can be upgraded to improve performance in certain cases. Upgrades may involve high-performance bearings, improved seals, reinforced hub components, enhanced cooling, performance coatings, or aftermarket axle hub assemblies. It’s important to assess the specific needs of the vehicle, consult with professionals, and consider compatibility with other components when pursuing axle hub upgrades.
editor by CX 2023-12-06
China RN100 Tractor Front Drive Axle (904) a wheel and axle simple machine
Product Description
Product Information:
>>Implementing ltalian Fiat wheel tractor advanced technology
>>Using center-arranged kind transmission shaft and swing kind middle swing pin
>>Internal construction:center reducer,differential and closing planet reducergood rigidity with complete front axle situation
>>Roller bearing utilizing in between the ending and the pin for light and productive steering
>>Independent oil street,hydraulic strain steering,steering angle to 50°Single cylinder or double cylinder
>>Adopting machining heart and specific equipment for machining,planetary reduction gear for gear grinding,all the sealing components are imported ones,not destroyed assembly
>>Adaptive for 80-110ps 4-wheel driving tractor
Technical Parameter:
Performance parameter | RN100 Entrance driving axle (904) | |
Driving ratio | sixteen.125/21.125 | |
Outline dimension | 1930×630×400 | |
Driving shaft front axle | Center-arranged driving shaft | |
Input shaft parameter | m=2.75 z=10 α=30°(m=2 z=14 α=30°) | |
Connection bolt in between hub and spoke | 8×M16×1.5 | |
Distance in between spokes (mm) | 1773 | |
The pressure of the hydraulic oil | 10±0.5 | |
load bearing (kN) | 24.5 | |
Net weight (KG) with no oil | 280 | |
Oil Quantity | Center (L) | 7 |
Round edge (L) | one.5 | |
Front Axle Place |
Extroversion angle of front wheel | 1° |
Introversion angle | 7°30´ | |
Retroverted angle | 3° | |
Fore tie (mm) | one~five | |
Steering method | Fluid-link steering | |
Swing angle of the entrance axle | 11° | |
Maximum steering angle of entrance wheel | 50° | |
Steering Cylinder |
Steering hydraulic cylinder variety | Right rearThe still left and appropriate rear sort |
Diameter of steering hydraulic cylinder(mm) | 55 | |
Steering hydraulic cylinder quantity | 1 or 2 | |
Steering hydraulic cylinder journey(mm) | 205 |
US $1,366.86-1,479.28 / Piece | |
2 Pieces (Min. Order) |
###
Type: | Axle |
---|---|
Certification: | ISO9001 |
Driving System Parts: | Front Axle |
Transmission System Parts: | Drive Axle |
Color: | Black |
Model: | 904 |
###
Customization: |
Available
|
---|
###
Performance parameter | RN100 Front driving axle (904) | |
Driving ratio | 16.125/21.125 | |
Outline dimension | 1930×630×400 | |
Driving shaft front axle | Middle-arranged driving shaft | |
Input shaft parameter | m=2.75 z=10 α=30°(m=2 z=14 α=30°) | |
Connection bolt between hub and spoke | 8×M16×1.5 | |
Distance between spokes (mm) | 1773 | |
The pressure of the hydraulic oil | 10±0.5 | |
load bearing (kN) | 24.5 | |
Net weight (KG) without oil | 280 | |
Oil Volume | Middle (L) | 7 |
Round edge (L) | 1.5 | |
Front Axle Position |
Extroversion angle of front wheel | 1° |
Introversion angle | 7°30´ | |
Retroverted angle | 3° | |
Fore tie (mm) | 1~5 | |
Steering method | Fluid-link steering | |
Swing angle of the front axle | 11° | |
Maximum steering angle of front wheel | 50° | |
Steering Cylinder |
Steering hydraulic cylinder type | Right rear\The left and right rear type |
Diameter of steering hydraulic cylinder(mm) | 55 | |
Steering hydraulic cylinder quantity | 1 or 2 | |
Steering hydraulic cylinder travel(mm) | 205 |
US $1,366.86-1,479.28 / Piece | |
2 Pieces (Min. Order) |
###
Type: | Axle |
---|---|
Certification: | ISO9001 |
Driving System Parts: | Front Axle |
Transmission System Parts: | Drive Axle |
Color: | Black |
Model: | 904 |
###
Customization: |
Available
|
---|
###
Performance parameter | RN100 Front driving axle (904) | |
Driving ratio | 16.125/21.125 | |
Outline dimension | 1930×630×400 | |
Driving shaft front axle | Middle-arranged driving shaft | |
Input shaft parameter | m=2.75 z=10 α=30°(m=2 z=14 α=30°) | |
Connection bolt between hub and spoke | 8×M16×1.5 | |
Distance between spokes (mm) | 1773 | |
The pressure of the hydraulic oil | 10±0.5 | |
load bearing (kN) | 24.5 | |
Net weight (KG) without oil | 280 | |
Oil Volume | Middle (L) | 7 |
Round edge (L) | 1.5 | |
Front Axle Position |
Extroversion angle of front wheel | 1° |
Introversion angle | 7°30´ | |
Retroverted angle | 3° | |
Fore tie (mm) | 1~5 | |
Steering method | Fluid-link steering | |
Swing angle of the front axle | 11° | |
Maximum steering angle of front wheel | 50° | |
Steering Cylinder |
Steering hydraulic cylinder type | Right rear\The left and right rear type |
Diameter of steering hydraulic cylinder(mm) | 55 | |
Steering hydraulic cylinder quantity | 1 or 2 | |
Steering hydraulic cylinder travel(mm) | 205 |
What Is an Axle?
An axle is the central shaft of a rotating wheel or gear. It can be fixed to the wheels and vehicle or may rotate freely. In many cases, the axle also includes a bearing. It is a critical part of your vehicle because it is responsible for the steering and acceleration of your vehicle. Several different types of axles are available.
Types of axles
Axles are used in various kinds of vehicles. Each type of axle carries a different load. The first kind is called the floating axle, while the second type is called the fixed axle. Both types are commonly used in light-duty vehicles and medium-duty trucks. In addition, there are different types of semi-floating axles. These axles are mainly used in trucks, light-duty pickups, and big SUVs.
A live axle transmits power from an engine to the wheels, while a dead axle does not convey power. A dead axle is also known as a lazy axle. A number of vehicles are fitted with dead axles. These axles are usually installed in front of the driving axle. However, a pusher axle is also a dead axle.
Besides being important for vehicle movement, axles are also important for suspension. These parts transfer the driving torque from the driveshaft to the wheels, which maintains the position of the wheels. They are made of durable steel, and are very hard to bend except in cases of severe impact. There are different types of axles based on their purpose: driving axles transfer engine torque to the wheels and dead axles serve as suspension components.
Floating axles have two deep groove ball bearings at each end, and are often called full floating axles. They are usually mounted in SUVs, and are more durable than regular car axles. They are also relatively inexpensive, and can support large loads. The full floating axle is usually used in heavy-duty trucks, midsize trucks, and four-wheel-drive vehicles.
Another type of axle is called a lift axle. These axles are used in Multi-Axle Vehicles, which have more than four axles. As a result, the vehicle has a greater weight capacity than a normal car. A five-axle truck has a gross vehicle weight of forty-two tons, while its kerb weight is twelve tons. Unloaded, it is therefore equal to 30 tons.
Front axles: The front axles of cars are primarily responsible for steering and processing road shocks. The front axle is made of steel that is 0.4-3% carbon steel and one-to-three percent nickel steel. Its circular or elliptical ends and I-section center help it withstand bending loads during braking. The rear axles are the drive shafts and transmit power from the differential to the rear wheels.
Rear axles are inexpensive. They connect the rear differential and can be purchased for about $150, depending on the make and model of the car. They can be found in many modern vehicles, and are commonly found in front-drive vehicles. These modern vehicles also have axle CV shafts, which are more unique than traditional axles.
In addition to tyres, the axles are responsible for transferring power from the engine to the wheels. An axle can break due to improper maintenance or a car accident, and can affect the performance of a vehicle. A damaged axle will cause it to transfer power slowly. It might also make a clunking or sputtering noise.
Cost of replacing an axle
Replacing an axle can be a costly task. A car’s axles should last between 35k and 100k miles. However, they can be damaged by hard hits or collisions. Depending on the extent of damage, the car may require a new axle or repair. The cost of an axle repair or replacement depends on several factors, including where the car was hit, the type of car and labor charges.
The cost of replacing an axle can range from around $200 to $900, depending on your vehicle and the type of work involved. Parts can be purchased for under $100 each, but you’ll also need to factor in labor, which can cost up to $200 or more. If you’re replacing both the rear and front axles, the cost will be higher than for just one axle replacement.
Axle repair is a complicated procedure, and the cost varies based on the make and model of your vehicle. A replacement axle will allow wheels to rotate freely. Depending on the severity of the problem, a front axle repair can run between $500 and $800. A rear axle repair will run you about $700.
Although an axle replacement may seem like an expensive and time-consuming task, the process will be less expensive than repairing the whole assembly. Professional mechanics can also replace one axle at a time. If you have a warranty on your car, this can cover the cost of the repair. This is a good way to save money and time while getting your car back on the road.
One of the most common causes of axle failure is the leakage of grease. When grease leaks, the CV joint is left dry, and dirt will get in. Without lubrication, this leads to increased wear, and increases the cost of axle replacement. For this reason, most mechanics will recommend replacing the entire half-shaft instead of just the axle, thereby reducing the cost and the labor time.
Depending on the severity of the damage, replacing an axle can take several hours. Aside from the repair, an alignment may be needed afterward. Most garages include this service with axle work. Depending on the type of alignment, it could cost from $20 to $150+. A complete diagnosis of the vehicle can take up to three hours to complete.
In some cases, a broken axle is completely irreparable. It will damage the rest of the vehicle and may lead to other problems. In such cases, it’s best to take it to a mechanic for repair as soon as possible. In most cases, an axle replacement should be needed just once during the life of the car.
Axles are available in pairs or individually. You can also find them at a junkyard. Installing a new axle is not difficult if you have the proper tools. An impact wrench can help make the job go faster. However, it’s important to have a flat surface for the work and wear safety gear.
Insurance coverage for repairing an axle
Car insurance may cover the costs of repairing an axle if it’s damaged in an accident, but if the damage occurred because of normal wear and tear, it may not be covered. Similarly, your insurance policy may not cover damage to tires or rims, and it might not cover the costs of a new axle, depending on the condition of the axle.
Your car’s axle is an important part of the vehicle, transferring power from the engine to the wheels. They are built to be durable, but they can bend or break due to a variety of factors, including running over a curb, hitting potholes at high speed, and auto collisions. In such cases, your car may not be able to drive, and a replacement axle may be expensive.
Some of the symptoms of an axle problem are shuddering or clicking sounds when shifting gears. Occasionally, a car may even completely stop. This can lead to an accident or even a loss of control. It’s best to fix an axle before it damages your car in an accident. In some cases, repairing the axle can cost only a few hundred dollars.
You should have your vehicle inspected for signs of wear and tear before repairing an axle. It’s crucial to take your vehicle to a mechanic immediately after an accident, as delayed repairs can lead to further suspension issues. Ideally, your vehicle’s axle should last four to five years or fifty thousand miles, although these numbers can vary. The life of an axle depends on a variety of factors, including the type of driving you do and how often you drive. Driving over rocky or icy surfaces can wear out the protective rubber boot. The rubber can also dry out and crack over time.
While the axle itself is a sturdy component, the parts connected to it are more susceptible to wear and tear. Associated components such as axle bearings are critical to the axle, as they help control the speed of the wheels when they turn. They also help maintain the integrity of the vehicle’s structural system.
Repairing an axle can be expensive, depending on the vehicle’s make and model. Depending on the severity of the problem, the costs of an axle repair can range from $500 to more than $1,000. The cost of an axle repair may also include other necessary repairs. If the damage is caused by normal use, your insurance provider may pay for the costs.
When your vehicle is in need of an axle replacement, it’s a good idea to contact a vehicle repair shop. A vehicle repair shop will give you the best possible estimate of the cost and time to repair the axle.
editor by czh 2023-01-05
China supplier 3601m1 CZPT CZPT CZPT CZPT JAC CZPT CZPT Tractor Truck CZPT 13t 16t 20t CZPT Rear Wheel Hub Spare Part with Free Design Custom
Product Description
3601M1 CZPT CZPT CZPT XIHU (WEST LAKE) DIS.FENG JAC CZPT CZPT tractor truck CZPT 13T 16T 20T CZPT Rear wheel hub spare part
Product Description
Working principle of drum brake: Drum brake is mainly composed of brake base plate, brake drum, brake shoe, return spring, compression wheel and other parts. When braking, by stepping on the foot pedal and using the lever principle, the force of the push rod is applied to the brake master cylinder. After the pressure of the brake fluid is amplified and pushed the brake slave cylinder, the pistons at both ends of the brake slave cylinder will simultaneously push the same force to the shoe ends of the left and right brake shoes, and the other ends of the 2 brake shoes are supported by the support rod. At this time, the 2 brake shoes expand outward and fit with the inner surface of the brake drum to form friction, so as to achieve the purpose of braking. As the wheel is a rotating brake drum, the pressure acting on the brake shoe is asymmetric from left to right, resulting in self increasing and self reducing force. The friction torque of the force increasing brake shoe is 2 ~ 2.5 times that of the force reducing brake shoe, resulting in different wear degree of the 2 brake shoes
Detailed Photos
(1) The hub is made of QT450 material. (2) The NC machine tool carries out rough machining, and the machining center carries out finish machining and drilling. (3) Single inspection and delivery to ensure product stability.
Packaging & Shipping
details1. Our packing uses export wooden cases, plastic boxes, cartons or pallets. All the package are very strong, the wooden box is firmly bound, the package is covered with a waterproof film to prevent water or damage during transportation.Before packing, we an also stick corresponding labels and shipping marks according to your needs. All our goods are well packed.
2. According to the quantity, we can use express delivery, air transportation or CZPT transportation, automobile transportation,railway transportation, etc. we have our own freight forwarders, and we can also use the designated freight forwarders of customers, which can meet various delivery requirements of customers, such as EXW, FOB, CIF, etc.It can also be exported from many ports in China.
Such as HangZhou port, HangZhou port, HangZhou port, ZheJiang port, HangZhou River and HangZhou in China.
3. We can also send the goods by express if the customers have less goods. According to customer’s request, we can use express .such as DHL, TNT, EMS, FedEx, etc. the delivery time is 3-7. Safe, fast and convenient. It’s also a good choice for you.
Company Profile
HangZhou CZPT International Trade Co., Ltd., established in 2013, is a heavy truck auto parts service provider integrating production and manufacturing, independent processing, assembly and product sales. At present, the products cover China heavy truck series, ZheJiang ZheJiang Automobile Series, Xihu (West Lake) Dis. CZPT series, SAIC Xihu (West Lake) Dis.n series, CZPT Xihu (West Lake) Dis. series, North Benz series, CZPT Xihu (West Lake) Dis.feng series, CZPT heavy truck series, etc. Our company is located in HangZhou City, ZheJiang Province, the origin of heavy truck, with unique logistics and transportation conditions and superior geographical location. At present, the brands of our company include CZPT brand and cartor brand. Since its establishment, the company has been implementing “let the craftsman spirit penetrate into each process of each product and produce fine and high-quality products”, carrying forward the craftsman spirit and making the products enter the era of quality. Make the products not only good in quality and low in price, And excellent quality. In these 10 years, our company has been committed to continuous innovation and reform. With the business philosophy of honesty and trustworthiness, the production positioning of excellence, relying on excellent product quality, reasonable market price and complete market area protection, our company has won high recognition and unanimous praise from auto parts dealers and agents at home and abroad, and established a long-term CZPT development cooperation. We have a team in the new era and rich experience in the auto parts industry. Based on the basic principles of emphasizing credit, high quality and small profits, we look forward to cooperating with you and winning the future hand in hand!
Certifications
Screws and Screw Shafts
A screw is a mechanical device that holds objects together. Screws are usually forged or machined. They are also used in screw jacks and press-fitted vises. Their self-locking properties make them a popular choice in many different industries. Here are some of the benefits of screws and how they work. Also read about their self-locking properties. The following information will help you choose the right screw for your application.
Machined screw shaft
A machined screw shaft can be made of various materials, depending on the application. Screw shafts can be made from stainless steel, brass, bronze, titanium, or iron. Most manufacturers use high-precision CNC machines or lathes to manufacture these products. These products come in many sizes and shapes, and they have varying applications. Different materials are used for different sizes and shapes. Here are some examples of what you can use these screws for:
Screws are widely used in many applications. One of the most common uses is in holding objects together. This type of fastener is used in screw jacks, vises, and screw presses. The thread pitch of a screw can vary. Generally, a smaller pitch results in greater mechanical advantage. Hence, a machined screw shaft should be sized appropriately. This ensures that your product will last for a long time.
A machined screw shaft should be compatible with various threading systems. In general, the ASME system is used for threaded parts. The threaded hole occupies most of the shaft. The thread of the bolt occupy either part of the shaft, or the entire one. There are also alternatives to bolts, including riveting, rolling pins, and pinned shafts. These alternatives are not widely used today, but they are useful for certain niche applications.
If you are using a ball screw, you can choose to anneal the screw shaft. To anneal the screw shaft, use a water-soaked rag as a heat barrier. You can choose from 2 different options, depending on your application. One option is to cover the screw shaft with a dust-proof enclosure. Alternatively, you can install a protective heat barrier over the screw shaft. You can also choose to cover the screw shaft with a dust-proof machine.
If you need a smaller size, you can choose a smaller screw. It may be smaller than a quarter of an inch, but it may still be compatible with another part. The smaller ones, however, will often have a corresponding mating part. These parts are typically denominated by their ANSI numerical size designation, which does not indicate threads-per-inch. There is an industry standard for screw sizes that is a little easier to understand.
Ball screw nut
When choosing a Ball screw nut for a screw shaft, it is important to consider the critical speed of the machine. This value excites the natural frequency of a screw and determines how fast it can be turned. In other words, it varies with the screw diameter and unsupported length. It also depends on the screw shaft’s diameter and end fixity. Depending on the application, the nut can be run at a maximum speed of about 80% of its theoretical critical speed.
The inner return of a ball nut is a cross-over deflector that forces the balls to climb over the crest of the screw. In 1 revolution of the screw, a ball will cross over the nut crest to return to the screw. Similarly, the outer circuit is a circular shape. Both flanges have 1 contact point on the ball shaft, and the nut is connected to the screw shaft by a screw.
The accuracy of ball screws depends on several factors, including the manufacturing precision of the ball grooves, the compactness of the assembly, and the set-up precision of the nut. Depending on the application, the lead accuracy of a ball screw nut may vary significantly. To improve lead accuracy, preloading, and lubrication are important. Ewellix ball screw assembly specialists can help you determine the best option for your application.
A ball screw nut should be preloaded prior to installation in order to achieve the expected service life. The smallest amount of preload required can reduce a ball screw’s calculated life by as much as 90 percent. Using a lubricant of a standard grade is recommended. Some lubricants contain additives. Using grease or oil in place of oil can prolong the life of the screw.
A ball screw nut is a type of threaded nut that is used in a number of different applications. It works similar to a ball bearing in that it contains hardened steel balls that move along a series of inclined races. When choosing a ball screw nut, engineers should consider the following factors: speed, life span, mounting, and lubrication. In addition, there are other considerations, such as the environment in which the screw is used.
Self-locking property of screw shaft
A self-locking screw is 1 that is capable of rotating without the use of a lock washer or bolt. This property is dependent on a number of factors, but 1 of them is the pitch angle of the thread. A screw with a small pitch angle is less likely to self-lock, while a large pitch angle is more likely to spontaneously rotate. The limiting angle of a self-locking thread can be calculated by calculating the torque Mkdw at which the screw is first released.
The pitch angle of the screw’s threads and its coefficient of friction determine the self-locking function of the screw. Other factors that affect its self-locking function include environmental conditions, high or low temperature, and vibration. Self-locking screws are often used in single-line applications and are limited by the size of their pitch. Therefore, the self-locking property of the screw shaft depends on the specific application.
The self-locking feature of a screw is an important factor. If a screw is not in a state of motion, it can be a dangerous or unusable machine. The self-locking property of a screw is critical in many applications, from corkscrews to threaded pipe joints. Screws are also used as power linkages, although their use is rarely necessary for high-power operations. In the archimedes’ screw, for example, the blades of the screw rotate around an axis. A screw conveyor uses a rotating helical chamber to move materials. A micrometer uses a precision-calibrated screw to measure length.
Self-locking screws are commonly used in lead screw technology. Their pitch and coefficient of friction are important factors in determining the self-locking property of screws. This property is advantageous in many applications because it eliminates the need for a costly brake. Its self-locking property means that the screw will be secure without requiring a special kind of force or torque. There are many other factors that contribute to the self-locking property of a screw, but this is the most common factor.
Screws with right-hand threads have threads that angle up to the right. The opposite is true for left-hand screws. While turning a screw counter-clockwise will loosen it, a right-handed person will use a right-handed thumb-up to turn it. Similarly, a left-handed person will use their thumb to turn a screw counter-clockwise. And vice versa.
Materials used to manufacture screw shaft
Many materials are commonly used to manufacture screw shafts. The most common are steel, stainless steel, brass, bronze, and titanium. These materials have advantages and disadvantages that make them good candidates for screw production. Some screw types are also made of copper to fight corrosion and ensure durability over time. Other materials include nylon, Teflon, and aluminum. Brass screws are lightweight and have aesthetic appeal. The choice of material for a screw shaft depends on the use it will be made for.
Shafts are typically produced using 3 steps. Screws are manufactured from large coils, wire, or round bar stock. After these are produced, the blanks are cut to the appropriate length and cold headed. This cold working process pressudes features into the screw head. More complicated screw shapes may require 2 heading processes to achieve the desired shape. The process is very precise and accurate, so it is an ideal choice for screw manufacturing.
The type of material used to manufacture a screw shaft is crucial for the function it will serve. The type of material chosen will depend on where the screw is being used. If the screw is for an indoor project, you can opt for a cheaper, low-tech screw. But if the screw is for an outdoor project, you’ll need to use a specific type of screw. This is because outdoor screws will be exposed to humidity and temperature changes. Some screws may even be coated with a protective coating to protect them from the elements.
Screws can also be self-threading and self-tapping. The self-threading or self-tapping screw creates a complementary helix within the material. Other screws are made with a thread which cuts into the material it fastens. Other types of screws create a helical groove on softer material to provide compression. The most common uses of a screw include holding 2 components together.
There are many types of bolts available. Some are more expensive than others, but they are generally more resistant to corrosion. They can also be made from stainless steel or aluminum. But they require high-strength materials. If you’re wondering what screws are, consider this article. There are tons of options available for screw shaft manufacturing. You’ll be surprised how versatile they can be! The choice is yours, and you can be confident that you’ll find the screw shaft that will best fit your application.
China Hot selling Made in China Hot Die Forging Alloy Steel Tractor Accessories Rear Axle Wheel Hub near me shop
Product Description
1
Products
Name: Made in china hot die forging alloy steel tractor accessories rear axle wheel hub
Material: 40CrMo
Weight: From .2kg-10kg
Packing: standard export packing
Min order: 100pcs
Customized production is available as your drawings or sample.
Process | Die Forging | |
Material | Stainless Steel, Carbon Steel, Alloy Steel | |
Weight | 0.1Kg~20Kg | |
Heat Treatment | Quenching, Annealing,Tempering,Normalizing, Quenching and Tempering | |
Testing instrument | composition testing | Spectrometer, Metallographic microscope |
Performance testing | Hardness tester, Tensile testing machine | |
Size Measuring | CMM,Micrometer, Vernier Caliper, Depth Caliper, feeler gauge | |
Thread Gauge , Height Gauge | ||
Roughness | Ra1.6~Ra6.3 | |
Machining Equipment | CNC Center , CNC Machines, Turning, Drilling, Milling, boring machine,Grinding Machines, | |
Wire EDM,Laser Cutting&Welding, Plasma Cutting &Welding, EDM etc. | ||
Quality control | Sampling inspection of raw materials and semi-finished products, 100% Inspection of finished products | |
Surface Treatment | Shot Blast , Powder Coating, Polishing, Galvanized , Chrome Plated | |
Production Capacity | 60000T / Years | |
Lead Time | Normally 30 – 45 Days. | |
Payment Terms | T/T , L/C | |
Material Standard | ASTM , AISI , DIN , BS, JIS, GB, | |
Certification | ISO9001:2008, IATF16949:2016 |
2
Products Quality Control
Quality control involve the inspection and control of incoming materials, production processes, and finished products.
The quality control process includes,
1 First of all, the incoming raw materials with random sampling are analyzed by metallographic microscope to ensure that the chemical composition meets the production requirements
2 Then In the production process, there are QC staffs timely sampling ensure that the products are free of defects in the manufacturing process, and to coordinate and handle any abnormal quality issues may be occurred.
3 The final step of production process is magnetic particle flaw detector of the metal parts to detect it’s hidden crack or other defects.
4 All the finished metal parts is sampled in proportion and sent to the laboratory for various mechanical performance tests and size measurement, and the surface quality is manually 100% inspected.
The relevant testing equipment pictures are as following:
3
Quality Management System Control:
We strictly carry out system management accordance with iso9001 and ts16949 quality standards. And 5S lean production management is implemented on the production site.
The production management site as following:
4
Our Advantages:
1 We have a complete production process and equipment research and development capabilities for non-ferrous metal forming. Over 25 years of production experience of forging equipment and casting equipment make us own deep level understanding and operating of all equipments’ performance and running.
2 Our parent company, HiHangZhou Group, is a world-renowned high-end machinery manufacturing enterprise with more than 30 domestic subsidiaries and branches. The sales volume of 4 products ranks No1 nationwide and even worldwide, providing us with a strong technical and financial support.
3 One-third of over 300 staff are technical technical R&D members, ensuring the continuous technical innovation and the sustainable development of our company.
4 Our company implements the employee stock ownership system of company shares Increasing members’ sense of responsibility, creativity and work motivation.
5 The company is a model enterprise in the region of low-carbon environmental protection, and energy saving and emission reduction in reduction.
6 Unique company culture, and the regular rotation of individual work position give full play to the potential of talents and provide strong vitality for the development of the company.
7 Our Service:
A. Customized and Standard Manufacturing Service
B. A variety of Manufacturing Process Integration
C. Quality and Delivery Time Guaranteed
D. Effective Communication Ability
5
Company Culture
Our Vision
To become 1 of the leading companies
Our Mission
To become a platform for employees to realize their dream
To become 1 of the transforming and upgrading pacemaker of Chinese enterprises
To set the national brands with pride
Our Belief
Strive to build the company into an ideal platform for entrepreneurs to realize their self-worth and contribute to the society
Values
Improvement is innovation, everyone can innovate
innovation inspired and failures tolerated
6
FAQ
1.
Q: Are you a trading company or a manufacturer?
A: Obviously we are a manufacturer of forging products, casting products and also have a high level of machining capabilities.
2.
Q: What series products do your have?
A: We are mainly engaged in forming processing of non-ferrous metals, including processing by casting , forging and machining. As you know, such machinery parts can be observed in various industries of equipment manufacturing.
3
Q: Do you provide samples? is it free?
A: Yes, we commonly provide samples according to the traditional practice, but we also need customers to provide a freight pay-by-account number to show mutual sincerity of cooperation.
4
Q: Is OEM available?
A: Yes, OEM is available.
5
Q: What’s your quality guarantee?
A: We insist that the survival of the company should depend on the products quality continuous improvement, without which we cannot survive for long. We carry out strictly product quality control for every process from incoming materials, production process to finished products via advanced detection instrument and equipment. We also invite independent third parties to certify our quality and management systems. Till now we have passed ISO/TS16949 and SGS certification .
6
Q. How about the Packing?
A: We usually use the iron box, or wooden case, also it can be customized according to customer’s demands.
7
Q: What is your minimum order quantity?
A: Yes, we require all international orders to have an minimum order quantity. The quantity is up to the exact products feature or property such as the material, weight, construction etc.
8
Q: What is the lead time?
A: Generally our forging products and casting products need to make new dies or molds, the time of making new dies or molds and samples within 30-45 days, and the large batch production time within 30-45 days. it’s also according to the parts structural complexity and quantity.
9
Q: What kinds of payment methods do you accept?
A: You can make the payment by T/T or L/C. 30% deposit in advance, 70% balance against the copy of B/L.
The Benefits of Spline Couplings for Disc Brake Mounting Interfaces
Spline couplings are commonly used for securing disc brake mounting interfaces. Spline couplings are often used in high-performance vehicles, aeronautics, and many other applications. However, the mechanical benefits of splines are not immediately obvious. Listed below are the benefits of spline couplings. We’ll discuss what these advantages mean for you. Read on to discover how these couplings work.
Disc brake mounting interfaces are splined
There are 2 common disc brake mounting interfaces – splined and six-bolt. Splined rotors fit on splined hubs; six-bolt rotors will need an adapter to fit on six-bolt hubs. The six-bolt method is easier to maintain and may be preferred by many cyclists. If you’re thinking of installing a disc brake system, it is important to know how to choose the right splined and center lock interfaces.
Aerospace applications
The splines used for spline coupling in aircraft are highly complex. While some previous researches have addressed the design of splines, few publications have tackled the problem of misaligned spline coupling. Nevertheless, the accurate results we obtained were obtained using dedicated simulation tools, which are not commercially available. Nevertheless, such tools can provide a useful reference for our approach. It would be beneficial if designers could use simple tools for evaluating contact pressure peaks. Our analytical approach makes it possible to find answers to such questions.
The design of a spline coupling for aerospace applications must be accurate to minimize weight and prevent failure mechanisms. In addition to weight reduction, it is necessary to minimize fretting fatigue. The pressure distribution on the spline coupling teeth is a significant factor in determining its fretting fatigue. Therefore, we use analytical and experimental methods to examine the contact pressure distribution in the axial direction of spline couplings.
The teeth of a spline coupling can be categorized by the type of engagement they provide. This study investigates the position of resultant contact forces in the teeth of a spline coupling when applied to pitch diameter. Using FEM models, numerical results are generated for nominal and parallel offset misalignments. The axial tooth profile determines the behavior of the coupling component and its ability to resist wear. Angular misalignment is also a concern, causing misalignment.
In order to assess wear damage of a spline coupling, we must take into consideration the impact of fretting on the components. This wear is caused by relative motion between the teeth that engage them. The misalignment may be caused by vibrations, cyclical tooth deflection, or angular misalignment. The result of this analysis may help designers improve their spline coupling designs and develop improved performance.
CZPT polyimide, an abrasion-resistant polymer, is a popular choice for high-temperature spline couplings. This material reduces friction and wear, provides a low friction surface, and has a low wear rate. Furthermore, it offers up to 50 times the life of metal on metal spline connections. For these reasons, it is important to choose the right material for your spline coupling.
High-performance vehicles
A spline coupler is a device used to connect splined shafts. A typical spline coupler resembles a short pipe with splines on either end. There are 2 basic types of spline coupling: single and dual spline. One type attaches to a drive shaft, while the other attaches to the gearbox. While spline couplings are typically used in racing, they’re also used for performance problems.
The key challenge in spline couplings is to determine the optimal dimension of spline joints. This is difficult because no commercial codes allow the simulation of misaligned joints, which can destroy components. This article presents analytical approaches to estimating contact pressures in spline connections. The results are comparable with numerical approaches but require special codes to accurately model the coupling operation. This research highlights several important issues and aims to make the application of spline couplings in high-performance vehicles easier.
The stiffness of spline assemblies can be calculated using tooth-like structures. Such splines can be incorporated into the spline joint to produce global stiffness for torsional vibration analysis. Bearing reactions are calculated for a certain level of misalignment. This information can be used to design bearing dimensions and correct misalignment. There are 3 types of spline couplings.
Major diameter fit splines are made with tightly controlled outside diameters. This close fit provides concentricity transfer from the male to the female spline. The teeth of the male spline usually have chamfered tips and clearance with fillet radii. These splines are often manufactured from billet steel or aluminum. These materials are renowned for their strength and uniform grain created by the forging process. ANSI and DIN design manuals define classes of fit.
Disc brake mounting interfaces
A spline coupling for disc brake mounting interfaces is a type of hub-to-brake-disc mount. It is a highly durable coupling mechanism that reduces heat transfer from the disc to the axle hub. The mounting arrangement also isolates the axle hub from direct contact with the disc. It is also designed to minimize the amount of vehicle downtime and maintenance required to maintain proper alignment.
Disc brakes typically have substantial metal-to-metal contact with axle hub splines. The discs are held in place on the hub by intermediate inserts. This metal-to-metal contact also aids in the transfer of brake heat from the brake disc to the axle hub. Spline coupling for disc brake mounting interfaces comprises a mounting ring that is either a threaded or non-threaded spline.
During drag brake experiments, perforated friction blocks filled with various additive materials are introduced. The materials included include Cu-based powder metallurgy material, a composite material, and a Mn-Cu damping alloy. The filling material affects the braking interface’s wear behavior and friction-induced vibration characteristics. Different filling materials produce different types of wear debris and have different wear evolutions. They also differ in their surface morphology.
Disc brake couplings are usually made of 2 different types. The plain and HD versions are interchangeable. The plain version is the simplest to install, while the HD version has multiple components. The two-piece couplings are often installed at the same time, but with different mounting interfaces. You should make sure to purchase the appropriate coupling for your vehicle. These interfaces are a vital component of your vehicle and must be installed correctly for proper operation.
Disc brakes use disc-to-hub elements that help locate the forces and displace them to the rim. These elements are typically made of stainless steel, which increases the cost of manufacturing the disc brake mounting interface. Despite their benefits, however, the high braking force loads they endure are hard on the materials. Moreover, excessive heat transferred to the intermediate elements can adversely affect the fatigue life and long-term strength of the brake system.
China Good quality Auto Parts Truck, Semi-Trailer and Tractor Wheel Hub Unit with Best Sales
Product Description
Heavy duty truck & trailer parts wheel hub assembly
We are a TS16949 certified factory specilizing in producing wheel hub , wheel hub unit and brake drum for axle of heavy duty truck, tractor and trailer for BPW, Volvo. There are 300 people in our factory. We have strict control over the quality. You are welcome to our factory.
Description | Heavy duty truck & trailer parts wheel hub unit |
Material | Ductile Iron(QT450-10) |
Casting Method | Iron based precoated sand casting |
Certificate | TS16949 |
Brand | RSIN |
Surface | Sand blasting, painting, KTL. |
Packing | Wooden Pallet |
Test Equipments
Why RSIN?
(1) Competitive price, all products are casted and machined in our factory, shipped directly to customer.
(2) Reliable quality, TS16946 certified casting manufacturer, we have strict control about quality.
(3) Professional, we focus on production of heavy duty truck & trailer wheel hub and brake drum for more than 10 years.
(4) Fast shipment, we have a efficient management system, several automatic casting lines, and more than 10 machining lines.
(5) Excellent service, our sales team has more than 10 years’ experience in oversea market, we know you better.
(6) Flexible production, we can customize the product according to your drawing.
The work we do to ensure quality.
(1) For Material, we have strict control about the quality of the material, we check the chemical composition of raw material every batch.
(2) For the moulding, to get smooth surface and better inner quality, we use iron based precoasted sand.
(3) For casting Quality, we have composition analysis by spectrometer before and after pouring.
(4) For the rough casting, every piece will be checked by inspectors and grinded to make sure the customers can have every part in good condition.
(5) For Machining, to get the high accury of the parts, we use high accurate CNC machine to keep the tolerance.
(6) For the inspection, we have many test equipments to assure checmical composition, mechnical feature and the dimension.
About us
HangZhou Xinchuangye Tube Pile Accessory Co., Ltd. is a professional manufacturer of wheel hub and brake drum for truck, tractor and semi-trailer.
Founded in 2007, the company covers an area of more than 120,000 square meters, has about 300 employees and 459 sets of equipments. Adhering to the concept of “Making the best wheel hub and brake drums in the world”, they take the lead in adopting advanced Iron based coated sand technology in the auto parts industry. The casting qualification rate has reached the leading level in domestic market and that earned them a good reputation. The main customers cover most of best truck axle manufacturer in China, such as ZheJiang Qingte, HangZhou Teide, ZheJiang Shenli, ZheJiang Jinsheng, and other well-known domestic vehicle and axle manufacturers.The products have been exported to the Middle East and Southeast Asia in batches, and also gained good reputation in Europe and the United States.
Contact me to for more information:
Axle Spindle Types and Features
The axle spindle is an integral part of your vehicle’s suspension. There are several different types and features, including mounting methods, bearings, and functions. Read on for some basic information on axle spindles. The next part of the article will cover how to choose the correct axle spindle for your vehicle. This article will also discuss the different types of spindles available, including the differences between the rear and front bearings.
Features
The improved axle spindle nut assembly is capable of providing additional performance benefits, including increased tire life and reduced seal failure. Its keyway features and radially inwardly extending teeth allow nut adjustment to be accomplished with precision. The invention further provides a unique, multi-piece locking mechanism that minimizes leakage and torque transfer. Its principles and features are detailed in the appended claims. For example, the improved axle spindle nut assembly is designed for use in vehicles that are equipped with a steering system.
The axle spindle nut assembly includes a nut 252 with threads 256 on its inner periphery. The axle spindle 50 also features threads 198 on its outer periphery. The nut is threaded onto the outboard end of the axle spindle 50 until it contacts the inboard surface of the axle spacer 26. In the assembled state, a bearing spacer 58 is also present on the axle spindle.
The axle spindle nut assembly can reduce axial end play between the wheel end assembly 52 and the axle spindle 50. It can be tightened to an extreme torque level, but if the thread faces separate, it will undercompress the bearing cone and spacer group. To minimize these disadvantages, the axle spindle nut assembly is a critical component of a wheel-end assembly. There are several types of axle spindle nuts.
The third embodiment of the axle spindle nut assembly 300 comprises an inner washer 202, an outer washer 310, and at least 1 screw 320. The axle spindle nut assembly 300 secures and preloads bearing cones 55, 57. Unlike the first embodiment, the axle spindle nut assembly 300 uses the inner washer 202, which is optional in the third embodiment. The inner washer 202 and outer washer 310 are similar to those of the first embodiment.
Functions
An axle spindle is 1 of the most important components of a vehicle’s suspension system. The spindle retains the position of bearings and a spacer in an axle by providing clamp force. The inner nut of an axle spindle should be properly torqued to ensure a secure fit. A spindle nut is also responsible for compressing bearings and spacers. If any of these components are missing, the spindle will not work properly.
An axle spindle is used in rear wheel drive cars. It carries the weight of the vehicle on the axle casing and transfers the torque from the differential to the wheels. The axle spindle and hub are secured on the spindle by large nuts. The axle spindle is a vital component of rear wheel drive vehicles. Hence, it is essential to understand the functions of axle spindle. These components are responsible for the smooth operation of a vehicle’s suspension system.
Axle spindles can be mounted in 3 ways: in the typical axle assembly, the spindles are bolted onto the ends of the tubular axle, and the axle is suspended by springs. Short stub-axle mounting uses a torsion beam that flexes to provide a smooth ride. A second washer is used to prevent excessive rotation of the axle spindle.
Apart from being a crucial component of the suspension system, the spindles of the wheels are responsible for guiding the vehicle in a straight line. They are connected to the steering axis and are used in different types of suspension systems. European cars use a MacPherson Strut suspension system in which the spindle is connected to the arms in the front and rear of the suspension frame. The MacPherson strut allows the shock absorber housing to turn the wheel.
Methods of mounting
Various methods of mounting axle spindle are available. In general, these methods involve forming a tubular blank of uniform cross section and thickness, and receiving the bearing assembly against it. The spindle is then secured using a collar, which also serves as a bearing stop. In some cases, additional features are used to provide greater security. Some of these features may not be suitable for all applications. But they are generally suitable.
Axle spindle forming is usually done by progressive steps using hollow punches. The metallic body of the punch has an inner work surface, which receives the axle blank. A mandrel is fixed within the work opening of the punch. The punch body’s work surface forges the spindle about the mandrel. The punch has 2 ends, a closed and an open one.
A wheeled vehicle axle assembly (10) includes a cylindrical housing member (12 a) and a plurality of spindle mounting flanges (30) secured on the housing member. The spindles (16) are firmly attached to the housing member by means of coupling members. The coupling members are configured to distribute the bending loads imposed on the spindle by the axle. It is important to note that the coupling members can be either threaded or screwed.
Traditionally, axle spindles were made from tubular blanks of irregular thickness. This method allowed for a gradual reduction in diameter and eliminated the need for extra metal within the spindle. Similarly, axles made by cold forming eliminate the need for additional metal in the spindle. In this way, the overall cost of manufacture is also reduced. The material used for manufacturing axles also determines the size and shape of the final product.
Bearings
A nut 16 is used to retain the wheel bearings on axle spindle 12. The nut comprises several parts. The first portion includes a plurality of threads and a deformable second portion. The nut may be disposed on the inboard or outboard end of the axle spindle. This type of nut is typically secured to the axle spindle by a retaining nut.
The bearings are installed in the spindle to allow the wheel hub to rotate. While bearings are greased, they can dry out over time. Consequently, you may hear a loud clicking sound when turning your vehicle. Alternatively, you may notice grease on the edges of your tires. Bearing failure can cause severe damage to your axle spindle. If you notice any of these symptoms, you may need to replace the bearings on your axle spindle. Fortunately, you can purchase the necessary bearing parts at O’Reilly Auto Parts.
There are 3 ways to mount an axle spindle. A typical axle assembly has the spindles bolted to the ends of the tubular axle. A torsion beam is also used to mount the spindles on the axle. This torsion beam acts like a spring to help make the ride smooth and bump-free. Lastly, the axle spindle is sometimes mounted as a bolt-on component.
Cost
If your axle spindle has been damaged, you may need to have it replaced. This part of the axle is relatively easy to replace, but you need to know how to do it correctly. To replace your axle spindle, you must first remove the damaged one. To do this, a technician will cut the weld. They will then thread the new 1 into the axle tube and torque it to specification. After that, they will weld the new axle spindle into place.
When you are thinking about the cost of an axle spindle replacement, you must first determine if it is worth it for your vehicle. It is generally a good idea to replace the spindle only if it is causing damage to your vehicle. You can also replace your axle housing if it is deteriorating. If you do not replace the spindle, you can risk damaging the axle housing. To save money, you can consider using a repair kit.
You can also purchase an axle nut socket set. Most wrenches have an adjusting socket for this purpose. The socket set should be suitable for most vehicle types. Axle spindle replacement costs around $500 to $600 before tax. However, you should be aware that these costs vary widely based on the type of vehicle you have. The parts can cost between $430 and $480, and the labor can cost anywhere from $50 to 70.