Product Description
Product Description
A wheel bearing is applied to the automotive axle to load and provide accurate CZPT components for the rotation of the wheel hub, both bearing axial load and radial load. It has good performance to installing, omitted clearance, lightweight, compact structure, large load capacity, for the sealed bearing prior to loading, ellipsis external wheel grease seal and from maintenance, etc. And wheel bearing has been widely used in cars, trucks.
An Auto wheel bearing is the main usage of bearing and provides an accurate CZPT to the rotation of the wheel hub. Under axial and radial load, it is a very important component. It is developed on the basis of standardized angular contact ball bearings and tapered roller bearings.
Features:
A. auto wheel hub bearings are adopted with international superior raw material and high-class grease from USA Shell grease.
B.The series auto wheel hub bearings are in the nature of frame structure, lightweight, large rated burden, strong resistant capability, thermostability, good dustproof performance and etc.
C. Auto wheel hub bearing can be endured bidirectional axial load and major radial load and sealed bearings are unnecessary to add lubricant additives upon assembly.
Product Parameters
Item | Automotive parts Rear axle wheel bearing hub 512162 BR935712 for CZPT Taurus 2 YF121104AC YF122C299AB YF1C1104AC YF1Z1104AC |
BR935712 |
Carfitment
Ford Taurus 2000 4-Wheel ABS, Rear Drum Brakes
Mercury Sable 2000- 4-Wheel ABS, Rear Drum Brakes
Other Model List Reference( Please contact us for more details)
Ref. No. | Ref. No. | Ref. No. | Car Model |
512000 | BR930053 | 512000 | Saturn S Series |
512179 | BR930071 | 512179 | Acura |
513098 | FW156 | 513098 | Acura |
513033 | BR93571 | 513033 | Acura Integra |
513105 | BR930113 | 513105 | Acura Integra |
512012 | BR935718 | 512012 | Audi TT |
513125 | BR930161 | 513125 | BMW 318 |
513017K | BR93571K | 513017K | Buick Skyhawk |
512244 | BR930075 | HA590073 | Buick Allure |
513203 | BR930184 | HA590076/ HA590085 | Buick Allure |
512078 | BR930078 | 512078 | Buick Century |
512150 | BR930075 | 512150 | Buick Century |
512151 | BR930145 | 512151 | Buick Century |
512237 | BR930075 | 512237 | Buick Century |
513018 | BR930026 | 513018 | Buick Century |
513121 | BR930148 Threaded Hub/BR930548K | 513121 | Buick Century |
513160 | BR930184 | 513160 | Buick Century |
513179 | BR930149/930548K | 513179 | Buick Century |
513011K | BR930091K | 513011K | Buick Century |
513016K | BR930571K | 513016K | Buick Century |
513062 | BR930068 | 513062 | Buick Electra |
512003 | BR930074 | 512003 | Buick Lesabre |
513088 | BR930077 | 513088 | Buick LeSabre |
513087 | BR930076 | 513087 | Buick Park Ave |
512004 | BR930096 | 512004 | Buick Regal |
513044 | BR930083K | 513044 | Buick Regal |
513187 | BR930149/930548K | 513187 | Buick Rendevous |
513013 | BR930052K | 513013 | Buick Riviera |
513012 | BR930093 | 513012 | Buick Skyhawk |
512001 | BR930070 | 512001 | Buick Skylark |
515053 | BR93571 | SP450301 | Cadillac Escalade |
515571 | BR930346 | SP550307 | Cadillac Esclade |
513164 | BR930169 | HA596467 | Cadillac Catera |
515036 | BR930304 | SP500300 | cadillac Escalade |
515005 | BR930265 | 515005 | Chevy Astro |
515019 | BR935719 | SP550308 | Chevy Astro |
513200 | BR930497 | SP450300 | Chevy Blazer |
513090 | BR930186 | 513090 | Chevy Camaro |
513204 | BR935716 | HA590068 | Chevy Colbalt |
512229 | BR930327 | 512229 | Chevy Equinox |
512230 | BR930328 | 512230 | Chevy Equinox |
512152 | BR930098 | 512152 | Chevy Fleet Classic |
513137 | BR930080 | 513137 | Chevy Fleet Classic |
513215 | BR93571 | HA590071 | Chevy Malibu |
518507 | BR930300K | 518507 | Chevy Prizm |
515054 | SP550306 | Chevy Silverado | |
515058 | BR93571 | SP58571 | Chevy Silverado |
513193 | BR930308 | 513193 | Chevy Tracker |
513124 | BR930097 | 513124 | Chevy/GMC |
515018 | HA591339 | Chevy/GMC | |
515015 | BR930406 | SP580302/580303 | Chevy/GMC 20/2500 |
515016 | SP580300 | Chevy/GMC 20/2500 | |
515001 | BR930094 | 515001 | Chevy/GMC All K Series |
515002 | BR930035 | 515002 | Chevy/GMC K Series |
515041 | BR930406 | SP580302/580303 | Chevy/GMC K1500 |
515048 | Chevy/GMC K1500 | ||
515055 | Chevy/GMC K1500 | ||
515037 | Chevy/GMC K3500 | ||
513061 | BR930064 | 513061 | Chevy/GMC S15 Jimmy |
512133 | BR930176 | 512133 | Chrysler Cirrus |
512154 | BR930194 | 512154 | Chrysler Cirrus |
512220 | BR930199 | 512220 | Chrysler Cirrus |
513138 | BR930138 | 513138 | Chrysler Cirrus |
512571 | BR930188 / 189 | 512571 | Chrysler Concorde |
513089 | BR930190K | 513089 | Chrysler Concorde |
518501 | BR930001 | 518001 | Chrysler E Class |
518502 | BR930002 | 518502 | Chrysler E Class |
513075 | BR930013 | 513075 | Chrysler Le Baron |
518500 | BR930000 | 518500 | Chrysler LeBaron |
513123 | BR935715 | 513123 | Chrysler Prowler |
512167 | BR930173 | 512167 | Chrysler PT Cruiser |
512136 | BR930172 | 512136 | Chrysler Sebring |
512157 | BR930066 | 512157 | Chrysler Town & Country |
512169 | BR935718 | 512169 | Chrysler Town & Country |
512170 | BR935719 | 512170 | Chrysler Town & Country |
513074 | BR930571K | 513074 | Chrysler Town & Country |
513122 | BR935716 | 513122 | Chrysler Town & Country |
512155 | BR930069 | 512155 | Chrysler Town Country |
512156 | BR930067 | 512156 | Chrysler Town Country |
A wide range of applications:
• agriculture and forestry equipment
• automotive and industrial gearboxes
• automotive and truck electric components, such as alternators
• electric motors
• fluid machinery
• material handling
• power tools and household appliances
• textile machinery
• two Wheeler
Company Profile
Our Advantages
1.ISO Standard
2.Bearing Small order accepted
3.In Stock bearing
4.OEM bearing service
5.Professional Technical Support
6.Timely pre-sale service
7.Competitive price
8.Full range of products on auto bearings
9.Punctual Delivery
11.Excellent after-sale service
Packaging & Shipping
Packaging Details | 1 piece in a single box 50 boxes in a carton 20 cartons in a pallet |
Nearest Port | ZheJiang or HangZhou |
Lead Time | For stock parts: 1-5 days. If no stock parts: <200 pcs: 15-30 days ≥200 pcs: to be negotiated. |
FAQ
If you have any other questions, please feel free to contact us as follows:
Q: Why did you choose us?
1. We provide the best quality bearings with reasonable prices, low friction, low noise, and long service life.
2. With sufficient stock and fast delivery, you can choose our freight forwarder or your freight forwarder.
Q: Do you accept small orders?
100% quality check, once your bearings are standard size bearings, even one, we also accept.
Q: How long is your delivery time?
Generally speaking, if the goods are in stock, it is 1-3 days. If the goods are out of stock, it will take 6-10 days, depending on the quantity of the order.
Q: Do you provide samples? Is it free or extra?
Yes, we can provide a small number of free samples.
Q: What should I do if I don’t see the type of bearings I need?
We have too many bearing series numbers. Just send us the inquiry and we will be very happy to send you the bearing details.
Q: Could you accept OEM and customize?
A: Yes, we can customize for you according to sample or drawing, but, pls provide us technical data, such as dimension and mark.
Contact Us
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
After-sales Service: | 1 Year / 30000-50000kms |
---|---|
Warranty: | 1 Year / 30000-50000kms |
Type: | Wheel Hub Bearing |
Material: | Gcr15/65mn/55 |
Tolerance: | P0 P6 P4 P5 P2 |
Certification: | TS16949 |
Samples: |
US$ 25/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
| Customized Request |
---|
What steps are involved in the proper removal and installation of an axle hub assembly?
Properly removing and installing an axle hub assembly requires a systematic approach and the use of appropriate tools. Here are the detailed steps involved in the process:
- Gather the necessary tools: Before starting the removal and installation process, gather the required tools and equipment. This may include a jack, jack stands, lug wrench, socket set, torque wrench, pry bar, hammer, and a suitable wheel bearing grease.
- Prepare the vehicle: Park the vehicle on a flat surface and engage the parking brake. If necessary, loosen the lug nuts on the wheel associated with the axle hub assembly, but do not remove them yet.
- Jack up the vehicle: Use a jack to lift the vehicle off the ground at a suitable jacking point. Place jack stands under the vehicle to provide additional support and ensure safety. Carefully lower the vehicle onto the jack stands.
- Remove the wheel: Completely remove the lug nuts and take off the wheel to access the axle hub assembly.
- Disconnect brake components: Depending on the specific vehicle, there may be brake components attached to the axle hub assembly. This can include brake calipers, brake pads, and brake rotors. Follow the appropriate procedure to disconnect these components, which may involve removing caliper bolts, brake pad retaining clips, or rotor retaining screws.
- Disconnect the axle: If the axle shaft is connected to the axle hub assembly, disconnect it by removing the retaining nut or bolts. This step may vary depending on the type of axle and vehicle.
- Remove the axle hub assembly: The axle hub assembly is typically secured to the steering knuckle or suspension component by bolts or studs. Use the appropriate tools to remove these fasteners and carefully detach the axle hub assembly from the vehicle. In some cases, the assembly may be tight and require the use of a pry bar or hammer to gently separate it from the mounting point.
- Clean and inspect: Once the axle hub assembly is removed, clean the mounting surface on the steering knuckle or suspension component. Inspect the mounting area for any damage or corrosion that may affect the installation of the new axle hub assembly. Also, inspect the axle shaft and surrounding components for any signs of damage or wear.
- Install the new axle hub assembly: Apply a thin layer of wheel bearing grease to the mounting surface of the steering knuckle or suspension component. Carefully align the new axle hub assembly with the mounting holes and slide it into place. Install the bolts or studs and tighten them according to the manufacturer’s specifications. If there are any retaining nuts or bolts for the axle shaft, reinstall them and torque them to the recommended values.
- Reconnect brake components: Reinstall any brake components that were disconnected, such as brake calipers, brake pads, and brake rotors. Make sure to follow the correct procedure and torque specifications for these components.
- Reinstall the wheel: Put the wheel back onto the vehicle and hand-tighten the lug nuts. Lower the vehicle from the jack stands using a jack, and then use a torque wrench to tighten the lug nuts to the manufacturer’s recommended torque specification.
- Test and verify: Once the axle hub assembly is installed and all components are properly reconnected, take the vehicle for a test drive. Pay attention to any unusual noises, vibrations, or handling issues. Verify that the axle hub assembly is functioning correctly and that there are no leaks or other problems.
It’s important to note that the specific steps and procedures may vary depending on the vehicle make and model. Always consult the vehicle’s service manual or seek professional assistance if you are unsure about any aspect of the removal and installation process.
In summary, the proper removal and installation of an axle hub assembly involve gathering the necessary tools, preparing the vehicle, jacking up the vehicle, removing the wheel, disconnecting brake components and the axle, removing the old axle hub assembly, cleaning and inspecting, installing the new assembly, reconnecting brake components, reinstalling the wheel, and finally testing and verifying the functionality of the axle hub assembly.
What role does the ABS sensor play in the context of an axle hub assembly?
The ABS (Anti-lock Braking System) sensor plays a crucial role in the context of an axle hub assembly. It is an integral component of the braking system and is responsible for monitoring the speed and rotational behavior of the wheels. Here’s a detailed explanation of the role of the ABS sensor in the context of an axle hub assembly:
- Wheel speed monitoring: The primary function of the ABS sensor is to monitor the rotational speed of the wheels. It does this by detecting the teeth or magnetic patterns on a tone ring or reluctor ring mounted on the axle hub or adjacent to the wheel hub. By continuously measuring the speed of each wheel, the ABS sensor provides crucial data to the vehicle’s ABS system.
- Anti-lock Braking System (ABS): The ABS system utilizes the data provided by the ABS sensors to determine if any wheel is about to lock up during braking. If a wheel is on the verge of locking up, the ABS system modulates the braking pressure to that wheel. This prevents the wheel from fully locking up, allowing the driver to maintain control of the vehicle and reducing the risk of skidding or loss of steering control.
- Traction control: In addition to aiding the ABS system, the ABS sensors also play a role in the vehicle’s traction control system. By continuously monitoring the rotational speed of the wheels, the ABS sensors assist in detecting any wheel slippage or loss of traction. When a wheel slips, the traction control system can adjust the engine power output or apply brake pressure to the specific wheel to regain traction and maintain stability.
- Stability control: Some modern vehicles incorporate stability control systems that rely on the ABS sensors to monitor the rotational behavior of the wheels. By comparing the speeds of individual wheels, the stability control system can detect and mitigate any potential loss of vehicle stability. This may involve applying brakes to specific wheels or adjusting engine power to help the driver maintain control in challenging driving conditions or during evasive maneuvers.
- Diagnostic capabilities: The ABS sensors also provide diagnostic capabilities for the vehicle’s onboard diagnostic system. In the event of a fault or malfunction within the ABS system, the ABS sensors can transmit error codes to the vehicle’s computer, which can then be retrieved using a diagnostic scanner. This aids in the identification and troubleshooting of ABS-related issues.
The ABS sensor is typically mounted near the axle hub, with its sensor tip in close proximity to the tone ring or reluctor ring. It generates electrical signals based on the detected rotational patterns, which are then transmitted to the vehicle’s ABS control module for processing and action.
In summary, the ABS sensor plays a vital role in the context of an axle hub assembly. It monitors the rotational speed of the wheels, providing essential data for the ABS system, traction control, and stability control. The ABS sensor helps prevent wheel lockup during braking, enhances traction in slippery conditions, aids in maintaining vehicle stability, and contributes to the diagnostic capabilities of the ABS system.
What are the torque specifications for securing an axle hub to the vehicle?
The torque specifications for securing an axle hub to the vehicle may vary depending on the specific make, model, and year of the vehicle. It is crucial to consult the manufacturer’s service manual or appropriate technical resources for the accurate torque specifications for your particular vehicle. Here’s a detailed explanation:
- Manufacturer’s Service Manual: The manufacturer’s service manual is the most reliable and authoritative source for torque specifications. It provides detailed information specific to your vehicle, including the recommended torque values for various components, such as the axle hub. The service manual may specify different torque values for different vehicle models or configurations. You can usually obtain the manufacturer’s service manual from the vehicle manufacturer’s official website or through authorized dealerships.
- Technical Resources: In addition to the manufacturer’s service manual, there are other technical resources available that provide torque specifications. These resources may include specialized automotive repair guides, online databases, or torque specification charts. Reputable automotive websites, professional repair manuals, or automotive forums dedicated to your vehicle’s make or model can be valuable sources for finding accurate torque specifications.
- Online Databases: Some websites offer online databases or torque specification tools that allow you to search for specific torque values based on your vehicle’s make, model, and year. These databases compile torque specifications from various sources and provide a convenient way to access the required information. However, it’s important to verify the accuracy and reliability of the source before relying on the provided torque values.
- Manufacturer Recommendations: In certain cases, the manufacturer may provide torque specifications on the packaging or documentation that accompanies the replacement axle hub. If you are using an OEM (Original Equipment Manufacturer) or aftermarket axle hub, it is advisable to check any provided documentation for torque recommendations specific to that particular product.
Regardless of the source you use to obtain torque specifications, it is essential to follow the recommended values precisely. Torque specifications are specified to ensure proper tightening and secure attachment of the axle hub to the vehicle. Over-tightening or under-tightening can lead to issues such as damage to components, improper seating, or premature wear. It is recommended to use a reliable torque wrench to achieve the specified torque values accurately.
In summary, the torque specifications for securing an axle hub to the vehicle depend on the specific make, model, and year of the vehicle. The manufacturer’s service manual, technical resources, online databases, and manufacturer recommendations are valuable sources to obtain accurate torque specifications. It is crucial to follow the recommended torque values precisely to ensure proper installation and avoid potential issues.
editor by CX 2024-05-08
China Professional Automotive Parts Rear Axle Wheel Bearing Hub 512151 Br930145 for Buick Century 1997-2003 axle bearing
Product Description
Product Description
A wheel bearing is applied to the automotive axle to load and provide accurate CZPT components for the rotation of the wheel hub, both bearing axial load and radial load. It has good performance to installation, omitted clearance, lightweight, compact structure, large load capacity, for the sealed bearing prior to loading, ellipsis external wheel grease seal and from maintenance, etc. And wheel bearing has been widely used in cars, trucks.
An Auto wheel bearing is the main usage bearing and provides an accurate CZPT to the rotation of the wheel hub. Under axial and radial load, it is a very important component. It is developed on the basis of standardized angular contact ball bearings and tapered roller bearings.
Features:
A. auto wheel hub bearings are adopted with international superior raw material and high-class grease from USA Shell grease.
B.The series auto wheel hub bearings are in the nature of frame structure, lightweight, large rated burden, strong resistant capability, thermostability, good dustproof performance and etc.
C. Auto wheel hub bearing can be endured bidirectional axial load and major radial load and sealed bearings are unnecessary to add lubricant additives upon assembly.
Product Parameters
Item | Automotive parts Rear axle wheel bearing hub 512151 BR930145 for BUICK CENTURY 1997-2 7470609 7470610
Ref. No.
512151
Applicable Models (Please contact us for more details)
Other Model List Reference( Please contact us for more details)
A wide range of applications: • agriculture and forestry equipment Company Profile Our Advantages 1.ISO Standard 2.Bearing Small order accepted 3.In Stock bearing 4.OEM bearing service 5.Professional Technical Support 6.Timely pre-sale service Packaging & Shipping
FAQ
If you have any other questions, please feel free to contact us as follows:
Q: Why did you choose us? 1. We provide the best quality bearings with reasonable prices, low friction, low noise, and long service life. 2. With sufficient stock and fast delivery, you can choose our freight forwarder or your freight forwarder.
Q: Do you accept small orders? 100% quality check, once your bearings are standard size bearings, even one, we also accept.
Q: How long is your delivery time? Generally speaking, if the goods are in stock, it is 1-3 days. If the goods are out of stock, it will take 6-10 days, depending on the quantity of the order.
Q: Do you provide samples? Is it free or extra? Yes, we can provide a small number of free samples.
Q: What should I do if I don’t see the type of bearings I need? We have too many bearing series numbers. Just send us the inquiry and we will be very happy to send you the bearing details. Q: Could you accept OEM and customize?
|
After-sales Service: | 1 Year / 30000-50000kms |
---|---|
Warranty: | 1 Year / 30000-50000kms |
Type: | Wheel Hub Bearing |
Material: | Gcr15/65mn/55 |
Tolerance: | P0 P6 P4 P5 P2 |
Certification: | TS16949 |
Samples: |
US$ 17/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
| Customized Request |
---|
Are there differences between front and rear axle hubs in terms of design and function?
Yes, there are differences between front and rear axle hubs in terms of design and function. Here’s a detailed explanation of these differences:
1. Design:
The design of front and rear axle hubs can vary based on the specific requirements of each axle position.
Front Axle Hubs: Front axle hubs are typically more complex in design compared to rear axle hubs. This is because front axle hubs are often responsible for connecting the wheels to the steering system and accommodating the front-wheel drive components. Front axle hubs may have provisions for attaching CV (constant velocity) joints, which are necessary for transmitting power from the engine to the front wheels in front-wheel drive or all-wheel drive vehicles. The design of front axle hubs may also incorporate features for connecting the brake rotor, allowing for the integration of the braking system.
Rear Axle Hubs: Rear axle hubs generally have a simpler design compared to front axle hubs. They are primarily responsible for connecting the wheels to the rear axle shafts and supporting the wheel bearings. Rear axle hubs may not require the same level of complexity as front axle hubs since they do not need to accommodate steering components or transmit power from the engine. However, rear axle hubs still play a critical role in supporting the weight of the vehicle, transmitting driving forces, and integrating with the brake system.
2. Function:
The function of front and rear axle hubs differs based on the specific demands placed on each axle position.
Front Axle Hubs: Front axle hubs have the following primary functions:
- Connect the wheel to the steering system, allowing for controlled steering and maneuverability.
- Support the wheel bearings to facilitate smooth wheel rotation and weight distribution.
- Integrate with the front-wheel drive components, such as CV joints, to transmit power from the engine to the front wheels.
- Provide a mounting point for the brake rotor or drum, allowing for the integration of the braking system.
Rear Axle Hubs: Rear axle hubs have the following primary functions:
- Connect the wheel to the rear axle shaft, facilitating power transmission and driving forces.
- Support the wheel bearings to enable smooth wheel rotation and weight distribution.
- Integrate with the brake system, providing a mounting point for the brake rotor or drum for braking performance.
3. Load Distribution:
Front and rear axle hubs also differ in terms of load distribution.
Front Axle Hubs: Front axle hubs bear the weight of the engine, transmission, and other front-end components. They also handle a significant portion of the vehicle’s braking forces during deceleration. As a result, front axle hubs need to be designed to handle higher loads and provide sufficient strength and durability.
Rear Axle Hubs: Rear axle hubs primarily bear the weight of the vehicle’s rear end and support the differential and rear axle shafts. The braking forces on the rear axle hubs are typically lower compared to the front axle hubs. However, they still need to be robust enough to handle the forces generated during acceleration, deceleration, and cornering.
In summary, there are differences between front and rear axle hubs in terms of design and function. Front axle hubs are typically more complex and accommodate steering components and front-wheel drive systems, while rear axle hubs have a simpler design focused on supporting the rear axle and integrating with the brake system. Understanding these differences is important for proper maintenance and repair of the axle hubs in a vehicle.
How often should axle hubs be inspected and replaced as part of routine vehicle maintenance?
Regular inspection and maintenance of axle hubs are crucial for ensuring the safe and efficient operation of a vehicle. The frequency of inspection and replacement may vary depending on several factors, including the vehicle’s make and model, driving conditions, and manufacturer’s recommendations. Here are some guidelines to consider:
- Manufacturer’s recommendations: The first and most reliable source of information regarding the inspection and replacement intervals for axle hubs is the vehicle manufacturer’s recommendations. These can usually be found in the owner’s manual or the manufacturer’s maintenance schedule. It is essential to follow these guidelines as they are specific to your particular vehicle.
- Driving conditions: If your vehicle is subjected to severe driving conditions, such as frequent towing, off-road use, or driving in extreme temperatures, the axle hubs may experience increased stress and wear. In such cases, more frequent inspections and maintenance may be necessary.
- Visual inspection: It is a good practice to visually inspect the axle hubs during routine maintenance or when performing other maintenance tasks, such as changing the brakes or rotating the tires. Look for any signs of damage, such as leaks, excessive play, or worn-out components. If any abnormalities are detected, further inspection or replacement may be required.
- Wheel bearing maintenance: The axle hubs house the wheel bearings, which are critical for the smooth rotation of the wheels. Some vehicles have serviceable wheel bearings that require periodic maintenance, such as cleaning and repacking with fresh grease. If your vehicle has serviceable wheel bearings, refer to the manufacturer’s recommendations for the appropriate maintenance intervals.
- Unusual noises or vibrations: If you notice any unusual noises, such as grinding, humming, or clicking sounds coming from the wheels, or if you experience vibrations while driving, it could be an indication of a problem with the axle hubs. In such cases, immediate inspection and necessary repairs or replacement should be performed.
It’s important to note that the intervals for inspecting and replacing axle hubs can vary significantly between different vehicles. Therefore, it is recommended to consult the vehicle manufacturer’s recommendations to determine the specific maintenance schedule for your vehicle. Additionally, if you are unsure or suspect any issues with the axle hubs, it is advisable to have a qualified mechanic or automotive technician inspect and assess the condition of the axle hubs.
In summary, the frequency of inspecting and replacing axle hubs as part of routine vehicle maintenance depends on factors such as the manufacturer’s recommendations, driving conditions, visual inspections, wheel bearing maintenance requirements, and the presence of any unusual noises or vibrations. Following the manufacturer’s guidelines and promptly addressing any abnormalities will help ensure the proper functioning and longevity of the axle hubs.
How do changes in wheel offset affect the angles and performance of axle hubs?
Changes in wheel offset can have a significant impact on the angles and performance of axle hubs. Here’s a detailed explanation:
Wheel offset refers to the distance between the centerline of the wheel and the mounting surface. It determines how far the wheel and tire assembly will be positioned in relation to the axle hub. There are three types of wheel offsets: positive offset, zero offset, and negative offset.
Here’s how changes in wheel offset can affect the angles and performance of axle hubs:
- Camber Angle: Camber angle refers to the inward or outward tilt of the wheel when viewed from the front of the vehicle. Changes in wheel offset can impact the camber angle. Increasing positive offset or reducing negative offset typically results in more positive camber, while increasing negative offset or reducing positive offset leads to more negative camber. Improper camber angle can cause uneven tire wear, reduced traction, and handling issues.
- Track Width: Wheel offset affects the track width, which is the distance between the centerlines of the left and right wheels. Wider track width can improve stability and cornering performance. Increasing positive offset or reducing negative offset generally widens the track width, while increasing negative offset or reducing positive offset narrows it.
- Steering Geometry: Changes in wheel offset also impact the steering geometry of the vehicle. Altering the offset can affect the scrub radius, which is the distance between the tire contact patch and the steering axis. Changes in scrub radius can influence steering effort, feedback, and stability. It’s important to maintain the appropriate scrub radius for optimal handling and performance.
- Wheel Bearing Load: Wheel offset affects the load applied to the wheel bearings. Increasing positive offset or reducing negative offset generally increases the load on the inner wheel bearing, while increasing negative offset or reducing positive offset increases the load on the outer wheel bearing. Proper wheel bearing load is crucial for their longevity and performance.
- Clearance and Interference: Changes in wheel offset can also impact the clearance between the wheel and suspension components or bodywork. Insufficient clearance due to excessive positive offset or inadequate clearance due to excessive negative offset can lead to rubbing, interference, or potential damage to the axle hub, suspension parts, or bodywork.
It’s important to note that any changes in wheel offset should be done within the manufacturer’s recommended specifications or in consultation with knowledgeable professionals. Deviating from the recommended wheel offset can lead to adverse effects on the axle hub angles and performance, as well as other aspects of the vehicle’s handling and safety.
When modifying wheel offset, it is crucial to consider the overall impact on the vehicle’s suspension geometry, clearance, and alignment. It may be necessary to make corresponding adjustments to maintain proper alignment angles, such as camber, toe, and caster, to ensure optimal tire wear, handling, and performance.
In summary, changes in wheel offset can have a significant impact on the angles and performance of axle hubs. They can affect camber angles, track width, steering geometry, wheel bearing load, and clearance. It is important to adhere to manufacturer’s specifications and consult with knowledgeable professionals when considering changes in wheel offset to ensure proper alignment, optimal performance, and safe operation of the vehicle.
editor by CX 2024-04-12
China Custom Whb Brand Hot Sales Automotive Bearing Front Axle Wheel Hub for CZPT Explorer 515050 Wheel Assembly Car Spare Part wholesaler
Product Description
Company introduction:
This is from GUANXIAN HAGUAN BEARING CO.,LTD.,located in China.WHB is our brand. We specialize in manufacturing double-row spherical roller bearing,pillow block bearing,thrust ball bearing and so on . We could supply bearing for you with competitive price or best price. Our products are sold well to Russia, Brazil, Mexico, Poland and Tunisia ect. If you are interested in our products, please send the enquiry to us as soon as possible. If you have any questions about the bearing can consult me.
Hope to establish a good business relationship with you. Looking forward to your early reply.
Thanks and best regards.
ISO Certificate:
CE Certificate:
Packing:
A. plastic box+outer carton+pallets
B. plastic bag+ single box+carton+pallet
C. plastic bag+ single box+middle box+carton+pallet
D. Of course we will also be based on your needs
FAQ:
1. What’s the minimum order quantity of your company?
our minimum order is one.
2. Can you accept OEM and customize it?
Yes, we can customize it for you according to the samples or drawings.
3. Can you provide samples for free?
Yes, we can provide samples free of charge, but we need our customers to bear the freight.
4.Is your company a factory or a trading company?
we have our own factories. We export bearings all over the world.
5. When is the warranty period of your bearings?
within 3 months, the customer needs to provide photos and return the bearing.
6.Can you tell me your company’s payment terms are acceptable?
T / T, D / P, L / C, Western Union remittance,Paypal,Money Gram….
7.Can you tell me the delivery time of your goods?
7-15 days, mainly depending on the quantity of your order.
What You Should Know About Axle Shafts
There are several things you should know about axle shafts. These include what materials they’re made of, how they’re constructed, and the signs of wear and tear. Read on to learn more about axle shafts and how to properly maintain them. Axle shafts are a crucial part of any vehicle. But how can you tell if 1 is worn out? Here are some tips that can help you determine whether it’s time to replace it.
Materials used for axle shafts
When it comes to materials used in axle shafts, there are 2 common types of materials. One is carbon fiber, which is relatively uncommon for linear applications. Carbon fiber shafting is produced by CZPT(r). The main benefit of carbon fiber shafting is its ultra-low weight. A carbon fiber shaft of 20mm diameter weighs just 0.17kg, as opposed to 2.46kg for a steel shaft of the same size.
The other type of material used in axle shafts is forged steel. This material is strong, but it is difficult to machine. The resulting material has residual stresses, voids, and hard spots that make it unsuitable for some applications. A forged steel shaft will not be able to be refinished to its original dimensions. In such cases, the shaft must be machined down to reduce the material’s hardness.
Alternatively, you can choose to purchase a through-hardened shaft. These types of axle shafts are suitable for light cars and those that use single bearings on their hub. However, the increased diameter of the axle shaft will result in less resistance to shock loads and torsional forces. For these applications, it is best to use medium-carbon alloy steel (MCA), which contains nickel and chromium. In addition, you may also need to jack up your vehicle to replace the axle shaft.
The spline features of the axle shaft must mate with the spline feature on the axle assembly. The spline feature has a slight curve that optimizes contact surface area and distribution of load. The process involves hobbing and rolling, and it requires special tooling to form this profile. However, it is important to note that an axle shaft with a cut spline will have a 30% smaller diameter than the corresponding 1 with an involute profile.
Another common material is the 300M alloy, which is a modified 4340 chromoly. This alloy provides additional strength, but is more prone to cracking. For this reason, this alloy isn’t suited for street-driven vehicles. Axle shafts made from this alloy are magnaflushed to detect cracks before they cause catastrophic failure. This heat treatment is not as effective as the other materials, but it is still a good choice for axle shafts.
Construction
There are 3 basic types of axle shafts: fully floating, three-quarter floating, and semi-floating. Depending on how the shaft is used, the axles can be either stationary or fully floating. Fully floating axle shafts are most common, but there are exceptions. Axle shafts may also be floating or stationary, or they may be fixed. When they are stationary, they are known as non-floating axles.
Different alloys have different properties. High-carbon steels are harder than low-carbon steels, while medium-carbon steels are less ductile. Medium-carbon steel is often used in axle shafts. Some shafts contain additional metals, including silicon, nickel, and copper, for case hardening. High-carbon steels are preferred over low-carbon steels. Axle shafts with high carbon content often have better heat-treatability than OE ones.
A semi-floating axle shaft has a single bearing between the hub and casing, relieving the main shear stress on the shaft but must still withstand other stresses. A half shaft needs to withstand bending loads from side thrust during cornering while transmitting driving torque. A three-quarter floating axle shaft is typically fitted to commercial vehicles that are more capable of handling higher axle loads and torque. However, it is possible to replace or upgrade the axle shaft with a replacement axle shaft, but this will require jacking the vehicle and removing the studs.
A half-floating axle is an alternative to a fixed-length rear axle. This axle design is ideal for mid-size trucks. It supports the weight of the mid-size truck and may support mid-size trucks with high towing capacities. The axle housing supports the inner end of the axle and also takes up the end thrust from the vehicle’s tires. A three-quarter floating axle, on the other hand, is a complex type that is not as simple as a semi-floating axle.
Axle shafts are heavy-duty load-bearing components that transmit rotational force from the rear differential gearbox to the rear wheels. The half shaft and the axle casing support the road wheel. Below is a diagram of different forces that can occur in the axle assembly depending on operating conditions. The total weight of the vehicle’s rear can exert a bending action on the half shaft, and the overhanging section of the shaft can be subject to a shearing force.
Symptoms of wear out
The constant velocity axle, also called the half shaft, transmits power from the transmission to the wheels, allowing the vehicle to move forward. When it fails, it can result in many problems. Here are 4 common symptoms of a bad CV axle:
Bad vibrations: If you notice any sort of abnormal vibration while driving, this may be a sign of axle damage. Vibrations may accompany a strange noise coming from under the vehicle. You may also notice tire wobble. It is important to repair this problem as it could be harmful to your car’s handling and comfort. A damaged axle is generally accompanied by other problems, including a weak braking response.
A creaking or popping sound: If you hear this noise when turning your vehicle, you probably have a worn out CV axle. When the CV joints lose their balance, the driveshaft is no longer supported by the U-joints. This can cause a lot of vibrations, which can reduce your vehicle’s comfort and safety. Fortunately, there are easy ways to check for worn CV axles.
CV joints: A CV joint is located at each end of the axle shaft. In front-wheel drive vehicles, there are 2 CV joints, 1 on each axle. The outer CV joint connects the axle shaft to the wheel and experiences more movement. In fact, the CV joints are only as good as the boot. The most common symptoms of a failed CV joint include clicking and popping noises while turning or when accelerating.
CV joint: Oftentimes, CV joints wear out half of the axle shaft. While repairing a CV joint is a viable repair, it is more expensive than replacing the axle. In most cases, you should replace the CV joint. Replacement will save you time and money. ACV joints are a vital part of your vehicle’s drivetrain. Even if they are worn, they should be checked if they are loose.
Unresponsive acceleration: The vehicle may be jerky, shuddering, or slipping. This could be caused by a bent axle. The problem may be a loose U-joint or center bearing, and you should have your vehicle inspected immediately by a qualified mechanic. If you notice jerkiness, have a mechanic check the CV joints and other components of the vehicle. If these components are not working properly, the vehicle may be dangerous.
Maintenance
There are several points of concern regarding the maintenance of axle shafts. It is imperative to check the axle for any damage and to lubricate it. If it is clean, it may be lubricated and is working properly. If not, it will require replacement. The CV boots need to be replaced. A broken axle shaft can result in catastrophic damage to the transmission or even cause an accident. Fortunately, there are several simple ways to maintain the axle shaft.
In addition to oil changes, it is important to check the differential lube level. Some differentials need cleaning or repacking every so often. CZPT Moreno Valley, CA technicians know how to inspect and maintain axles, and they can help you determine if a problem is affecting your vehicle’s performance. Some common signs of axle problems include excessive vibrations, clunking, and a high-pitched howling noise.
If you’ve noticed any of these warning signs, contact your vehicle’s manufacturer. Most manufacturers offer service for their axles. If it’s too rusted or damaged, they’ll replace it for you for free. If you’re in doubt, you can take it to a service center for a repair. They’ll be happy to assist you in any aspect of your vehicle’s maintenance. It’s never too early to begin.
CZPT Moreno Valley, CA technicians are well-versed in the repair of axles and differentials. The CV joint, which connects the car’s transmission to the rear wheels, is responsible for transferring the power from the engine to the wheels. Aside from the CV joint, there are also protective boots on both ends of the axle shaft. The protective boots can tear with age or use. When they tear, they allow grease and debris to escape and get into the joint.
While the CV joint is the most obvious place to replace it, this isn’t a time to ignore this important component. Taking care of the CV joint will protect your car from costly breakdowns at the track. While servicing half shafts can help prevent costly replacement of CV joints, it’s best to do it once a season or halfway through the season. ACV joints are essential for your car’s safety and function.
China Best Sales Automotive Parts Rear Axle Wheel Bearing Hub 512162 Br930222 for CZPT Taurus 2000 4-Wheel ABS Rear Drum Brakes wholesaler
Product Description
Product Description
A wheel bearing is applied to the automotive axle to load and provide accurate CZPT components for the rotation of the wheel hub, both bearing axial load and radial load. It has good performance to installing, omitted clearance, lightweight, compact structure, large load capacity, for the sealed bearing prior to loading, ellipsis external wheel grease seal and from maintenance, etc. And wheel bearing has been widely used in cars, trucks.
An Auto wheel bearing is the main usage of bearing and provides an accurate CZPT to the rotation of the wheel hub. Under axial and radial load, it is a very important component. It is developed on the basis of standardized angular contact ball bearings and tapered roller bearings.
Features:
A. auto wheel hub bearings are adopted with international superior raw material and high-class grease from USA Shell grease.
B.The series auto wheel hub bearings are in the nature of frame structure, lightweight, large rated burden, strong resistant capability, thermostability, good dustproof performance and etc.
C. Auto wheel hub bearing can be endured bidirectional axial load and major radial load and sealed bearings are unnecessary to add lubricant additives upon assembly.
Product Parameters
Item | Automotive parts Rear axle wheel bearing hub 512162 BR935712 for CZPT Taurus 2000 4-Wheel ABS Rear Drum Brakes |
Fitting position |
Rear Axle left and right |
Parameter | Rear Axle Flange Diameter: 5.492 In. Bolt Circle Diameter: 4.250 In. Wheel Pilot Diameter: 2.4906 In. Brake Pilot Diameter: 2.5362 In. Flange Offset: 2.274 In. Hub Pilot Diameter: 2.953 In. Bolt Quantity: 5 Bolt Hole qty: N/A ABS Sensor: Has ABS with Tone Ring Sensor Number of Splines: N/A |
||
ABS Sensor | Yes | ||
Package | 1,barreled package+outer carton+pallets 2,plastic bag+single box+outer carton+pallets 3,tube package+middle box+outer carton+pallets 4, According to your’s requirement |
||
Quality Control | We have a complete process for production and quality assurance to make sure our products can meet your requirement. 1. Assembly 2. Windage test 3. Cleaning 4. Rotary test 5. Greasing and gland 6. Noise inspection 7. Appearance inspection 8. Rust prevention |
Detailed Photos
Carfitment and part number
OEM No. | Ref. |
---|---|
512162 |
BR935712 |
Carfitment
Ford Taurus 2000 4-Wheel ABS, Rear Drum Brakes
Mercury Sable 2000- 4-Wheel ABS, Rear Drum Brakes
Other Model List Reference( Please contact us for more details)
BCA | SKF | TIMKEN | Car Model |
512000 | BR930053 | 512000 | Saturn S Series |
512179 | BR930071 | 512179 | Acura |
513098 | FW156 | 513098 | Acura |
513033 | BR93571 | 513033 | Acura Integra |
513105 | BR930113 | 513105 | Acura Integra |
512012 | BR935718 | 512012 | Audi TT |
513125 | BR930161 | 513125 | BMW 318 |
513017K | BR93571K | 513017K | Buick Skyhawk |
512244 | BR930075 | HA590073 | Buick Allure |
513203 | BR930184 | HA590076/ HA590085 | Buick Allure |
512078 | BR930078 | 512078 | Buick Century |
512150 | BR930075 | 512150 | Buick Century |
512151 | BR930145 | 512151 | Buick Century |
512237 | BR930075 | 512237 | Buick Century |
513018 | BR930026 | 513018 | Buick Century |
513121 | BR930148 Threaded Hub/BR930548K | 513121 | Buick Century |
513160 | BR930184 | 513160 | Buick Century |
513179 | BR930149/930548K | 513179 | Buick Century |
513011K | BR930091K | 513011K | Buick Century |
513016K | BR930571K | 513016K | Buick Century |
513062 | BR930068 | 513062 | Buick Electra |
512003 | BR930074 | 512003 | Buick Lesabre |
513088 | BR930077 | 513088 | Buick LeSabre |
513087 | BR930076 | 513087 | Buick Park Ave |
512004 | BR930096 | 512004 | Buick Regal |
513044 | BR930083K | 513044 | Buick Regal |
513187 | BR930149/930548K | 513187 | Buick Rendevous |
513013 | BR930052K | 513013 | Buick Riviera |
513012 | BR930093 | 513012 | Buick Skyhawk |
512001 | BR930070 | 512001 | Buick Skylark |
515053 | BR93571 | SP450301 | Cadillac Escalade |
515571 | BR930346 | SP550307 | Cadillac Esclade |
513164 | BR930169 | HA596467 | Cadillac Catera |
515036 | BR930304 | SP500300 | cadillac Escalade |
515005 | BR930265 | 515005 | Chevy Astro |
515019 | BR935719 | SP550308 | Chevy Astro |
513200 | BR930497 | SP450300 | Chevy Blazer |
513090 | BR930186 | 513090 | Chevy Camaro |
513204 | BR935716 | HA590068 | Chevy Colbalt |
512229 | BR930327 | 512229 | Chevy Equinox |
512230 | BR930328 | 512230 | Chevy Equinox |
512152 | BR930098 | 512152 | Chevy Fleet Classic |
513137 | BR930080 | 513137 | Chevy Fleet Classic |
513215 | BR93571 | HA590071 | Chevy Malibu |
518507 | BR930300K | 518507 | Chevy Prizm |
515054 | SP550306 | Chevy Silverado | |
515058 | BR93571 | SP58571 | Chevy Silverado |
513193 | BR930308 | 513193 | Chevy Tracker |
513124 | BR930097 | 513124 | Chevy/GMC |
515018 | HA591339 | Chevy/GMC | |
515015 | BR930406 | SP580302/580303 | Chevy/GMC 20/2500 |
515016 | SP580300 | Chevy/GMC 20/2500 | |
515001 | BR930094 | 515001 | Chevy/GMC All K Series |
515002 | BR930035 | 515002 | Chevy/GMC K Series |
515041 | BR930406 | SP580302/580303 | Chevy/GMC K1500 |
515048 | Chevy/GMC K1500 | ||
515055 | Chevy/GMC K1500 | ||
515037 | Chevy/GMC K3500 | ||
513061 | BR930064 | 513061 | Chevy/GMC S15 Jimmy |
512133 | BR930176 | 512133 | Chrysler Cirrus |
512154 | BR930194 | 512154 | Chrysler Cirrus |
512220 | BR930199 | 512220 | Chrysler Cirrus |
513138 | BR930138 | 513138 | Chrysler Cirrus |
512571 | BR930188 / 189 | 512571 | Chrysler Concorde |
513089 | BR930190K | 513089 | Chrysler Concorde |
518501 | BR930001 | 518001 | Chrysler E Class |
518502 | BR930002 | 518502 | Chrysler E Class |
513075 | BR930013 | 513075 | Chrysler Le Baron |
518500 | BR930000 | 518500 | Chrysler LeBaron |
513123 | BR935715 | 513123 | Chrysler Prowler |
512167 | BR930173 | 512167 | Chrysler PT Cruiser |
512136 | BR930172 | 512136 | Chrysler Sebring |
512157 | BR930066 | 512157 | Chrysler Town & Country |
512169 | BR935718 | 512169 | Chrysler Town & Country |
512170 | BR935719 | 512170 | Chrysler Town & Country |
513074 | BR930571K | 513074 | Chrysler Town & Country |
513122 | BR935716 | 513122 | Chrysler Town & Country |
512155 | BR930069 | 512155 | Chrysler Town Country |
512156 | BR930067 | 512156 | Chrysler Town Country |
A wide range of applications:
• agriculture and forestry equipment
• automotive and industrial gearboxes
• automotive and truck electric components, such as alternators
• electric motors
• fluid machinery
• material handling
• power tools and household appliances
• textile machinery
• two Wheeler
Company Profile
Our Advantages
1.ISO Standard
2.Bearing Small order accepted
3.In Stock bearing
4.OEM bearing service
5.Professional Technical Support
6.Timely pre-sale service
7.Competitive price
8.Full range of products on auto bearings
9.Punctual Delivery
11.Excellent after-sale service
Packaging & Shipping
Packaging Details | 1 piece in a single box 50 boxes in a carton 20 cartons in a pallet |
Nearest Port | ZheJiang or HangZhou |
Lead Time | For stock parts: 1-5 days. If no stock parts: <200 pcs: 15-30 days ≥200 pcs: to be negotiated. |
FAQ
If you have any other questions, please feel free to contact us as follows:
Q: Why did you choose us?
1. We provide the best quality bearings with reasonable prices, low friction, low noise, and long service life.
2. With sufficient stock and fast delivery, you can choose our freight forwarder or your freight forwarder.
Q: Do you accept small orders?
100% quality check, once your bearings are standard size bearings, even one, we also accept.
Q: How long is your delivery time?
Generally speaking, if the goods are in stock, it is 1-3 days. If the goods are out of stock, it will take 6-10 days, depending on the quantity of the order.
Q: Do you provide samples? Is it free or extra?
Yes, we can provide a small number of free samples.
Q: What should I do if I don’t see the type of bearings I need?
We have too many bearing series numbers. Just send us the inquiry and we will be very happy to send you the bearing details.
Q: Could you accept OEM and customize?
A: Yes, we can customize for you according to sample or drawing, but, pls provide us technical data, such as dimension and mark.
Contact Us
What Are Screw Shaft Threads?
A screw shaft is a threaded part used to fasten other components. The threads on a screw shaft are often described by their Coefficient of Friction, which describes how much friction is present between the mating surfaces. This article discusses these characteristics as well as the Material and Helix angle. You’ll have a better understanding of your screw shaft’s threads after reading this article. Here are some examples. Once you understand these details, you’ll be able to select the best screw nut for your needs.
Coefficient of friction between the mating surfaces of a nut and a screw shaft
There are 2 types of friction coefficients. Dynamic friction and static friction. The latter refers to the amount of friction a nut has to resist an opposing motion. In addition to the material strength, a higher coefficient of friction can cause stick-slip. This can lead to intermittent running behavior and loud squeaking. Stick-slip may lead to a malfunctioning plain bearing. Rough shafts can be used to improve this condition.
The 2 types of friction coefficients are related to the applied force. When applying force, the applied force must equal the nut’s pitch diameter. When the screw shaft is tightened, the force may be removed. In the case of a loosening clamp, the applied force is smaller than the bolt’s pitch diameter. Therefore, the higher the property class of the bolt, the lower the coefficient of friction.
In most cases, the screwface coefficient of friction is lower than the nut face. This is because of zinc plating on the joint surface. Moreover, power screws are commonly used in the aerospace industry. Whether or not they are power screws, they are typically made of carbon steel, alloy steel, or stainless steel. They are often used in conjunction with bronze or plastic nuts, which are preferred in higher-duty applications. These screws often require no holding brakes and are extremely easy to use in many applications.
The coefficient of friction between the mating surfaces of t-screws is highly dependent on the material of the screw and the nut. For example, screws with internal lubricated plastic nuts use bearing-grade bronze nuts. These nuts are usually used on carbon steel screws, but can be used with stainless steel screws. In addition to this, they are easy to clean.
Helix angle
In most applications, the helix angle of a screw shaft is an important factor for torque calculation. There are 2 types of helix angle: right and left hand. The right hand screw is usually smaller than the left hand one. The left hand screw is larger than the right hand screw. However, there are some exceptions to the rule. A left hand screw may have a greater helix angle than a right hand screw.
A screw’s helix angle is the angle formed by the helix and the axial line. Although the helix angle is not usually changed, it can have a significant effect on the processing of the screw and the amount of material conveyed. These changes are more common in 2 stage and special mixing screws, and metering screws. These measurements are crucial for determining the helix angle. In most cases, the lead angle is the correct angle when the screw shaft has the right helix angle.
High helix screws have large leads, sometimes up to 6 times the screw diameter. These screws reduce the screw diameter, mass, and inertia, allowing for higher speed and precision. High helix screws are also low-rotation, so they minimize vibrations and audible noises. But the right helix angle is important in any application. You must carefully choose the right type of screw for the job at hand.
If you choose a screw gear that has a helix angle other than parallel, you should select a thrust bearing with a correspondingly large center distance. In the case of a screw gear, a 45-degree helix angle is most common. A helix angle greater than zero degrees is also acceptable. Mixing up helix angles is beneficial because it allows for a variety of center distances and unique applications.
Thread angle
The thread angle of a screw shaft is measured from the base of the head of the screw to the top of the screw’s thread. In America, the standard screw thread angle is 60 degrees. The standard thread angle was not widely adopted until the early twentieth century. A committee was established by the Franklin Institute in 1864 to study screw threads. The committee recommended the Sellers thread, which was modified into the United States Standard Thread. The standardized thread was adopted by the United States Navy in 1868 and was recommended for construction by the Master Car Builders’ Association in 1871.
Generally speaking, the major diameter of a screw’s threads is the outside diameter. The major diameter of a nut is not directly measured, but can be determined with go/no-go gauges. It is necessary to understand the major and minor diameters in relation to each other in order to determine a screw’s thread angle. Once this is known, the next step is to determine how much of a pitch is necessary to ensure a screw’s proper function.
Helix angle and thread angle are 2 different types of angles that affect screw efficiency. For a lead screw, the helix angle is the angle between the helix of the thread and the line perpendicular to the axis of rotation. A lead screw has a greater helix angle than a helical one, but has higher frictional losses. A high-quality lead screw requires a higher torque to rotate. Thread angle and lead angle are complementary angles, but each screw has its own specific advantages.
Screw pitch and TPI have little to do with tolerances, craftsmanship, quality, or cost, but rather the size of a screw’s thread relative to its diameter. Compared to a standard screw, the fine and coarse threads are easier to tighten. The coarser thread is deeper, which results in lower torques. If a screw fails because of torsional shear, it is likely to be a result of a small minor diameter.
Material
Screws have a variety of different sizes, shapes, and materials. They are typically machined on CNC machines and lathes. Each type is used for different purposes. The size and material of a screw shaft are influenced by how it will be used. The following sections give an overview of the main types of screw shafts. Each 1 is designed to perform a specific function. If you have questions about a specific type, contact your local machine shop.
Lead screws are cheaper than ball screws and are used in light-duty, intermittent applications. Lead screws, however, have poor efficiency and are not recommended for continuous power transmission. But, they are effective in vertical applications and are more compact. Lead screws are typically used as a kinematic pair with a ball screw. Some types of lead screws also have self-locking properties. Because they have a low coefficient of friction, they have a compact design and very few parts.
Screws are made of a variety of metals and alloys. Steel is an economical and durable material, but there are also alloy steel and stainless steel types. Bronze nuts are the most common and are often used in higher-duty applications. Plastic nuts provide low-friction, which helps reduce the drive torques. Stainless steel screws are also used in high-performance applications, and may be made of titanium. The materials used to create screw shafts vary, but they all have their specific functions.
Screws are used in a wide range of applications, from industrial and consumer products to transportation equipment. They are used in many different industries, and the materials they’re made of can determine their life. The life of a screw depends on the load that it bears, the design of its internal structure, lubrication, and machining processes. When choosing screw assemblies, look for a screw made from the highest quality steels possible. Usually, the materials are very clean, so they’re a great choice for a screw. However, the presence of imperfections may cause a normal fatigue failure.
Self-locking features
Screws are known to be self-locking by nature. The mechanism for this feature is based on several factors, such as the pitch angle of the threads, material pairing, lubrication, and heating. This feature is only possible if the shaft is subjected to conditions that are not likely to cause the threads to loosen on their own. The self-locking ability of a screw depends on several factors, including the pitch angle of the thread flank and the coefficient of sliding friction between the 2 materials.
One of the most common uses of screws is in a screw top container lid, corkscrew, threaded pipe joint, vise, C-clamp, and screw jack. Other applications of screw shafts include transferring power, but these are often intermittent and low-power operations. Screws are also used to move material in Archimedes’ screw, auger earth drill, screw conveyor, and micrometer.
A common self-locking feature for a screw is the presence of a lead screw. A screw with a low PV value is safe to operate, but a screw with high PV will need a lower rotation speed. Another example is a self-locking screw that does not require lubrication. The PV value is also dependent on the material of the screw’s construction, as well as its lubrication conditions. Finally, a screw’s end fixity – the way the screw is supported – affects the performance and efficiency of a screw.
Lead screws are less expensive and easier to manufacture. They are a good choice for light-weight and intermittent applications. These screws also have self-locking capabilities. They can be self-tightened and require less torque for driving than other types. The advantage of lead screws is their small size and minimal number of parts. They are highly efficient in vertical and intermittent applications. They are not as accurate as lead screws and often have backlash, which is caused by insufficient threads.
China Good quality Automotive Parts Rear Axle Wheel Bearing Hub 512176 Br930276 for Honda Accord 1998-2002 L4 2.3L Non-ABS Drum Brakes near me manufacturer
Product Description
Product Description
A wheel bearing is applied to the automotive axle to load and provide accurate CZPT components for the rotation of the wheel hub, both bearing axial load and radial load. It has good performance to installing, omitted clearance, lightweight, compact structure, large load capacity, for the sealed bearing prior to loading, ellipsis external wheel grease seal and from maintenance, etc. And wheel bearing has been widely used in cars, trucks.
An Auto wheel bearing is the main usage of bearing and provides an accurate CZPT to the rotation of the wheel hub. Under axial and radial load, it is a very important component. It is developed on the basis of standardized angular contact ball bearings and tapered roller bearings.
Features:
A. auto wheel hub bearings are adopted with international superior raw material and high-class grease from USA Shell grease.
B.The series auto wheel hub bearings are in the nature of frame structure, lightweight, large rated burden, strong resistant capability, thermostability, good dustproof performance and etc.
C. Auto wheel hub bearing can be endured bidirectional axial load and major radial load and sealed bearings are unnecessary to add lubricant additives upon assembly.
Product Parameters
Item | Automotive parts Rear axle wheel bearing hub 512176 BR935716 for Honda Accord 1998-2002 L4 2.3L Non-ABS Drum brakes |
Fitting position |
Rear Axle left and right |
Parameter | Rear Axle Flange Diameter: 5.98 In. Bolt Circle Diameter: 4.50 In. Wheel Pilot Diameter: 2.52 In. Brake Pilot Diameter: 2.52 In. Flange Offset: 2.20 In. Hub Pilot Diameter: 2.60 In. Bolt Size: M12X1.5 Bolt Quantity: 4 Bolt Hole qty: N/A ABS Sensor: N Number of Splines: N/A |
||
ABS Sensor | No | ||
Package | 1,barreled package+outer carton+pallets 2,plastic bag+single box+outer carton+pallets 3,tube package+middle box+outer carton+pallets 4, According to your’s requirement |
||
Quality Control | We have a complete process for production and quality assurance to make sure our products can meet your requirement. 1. Assembly 2. Windage test 3. Cleaning 4. Rotary test 5. Greasing and gland 6. Noise inspection 7. Appearance inspection 8. Rust prevention |
Detailed Photos
Carfitment and part number
OEM No. | Ref. |
---|---|
512176 42200S84A01 42200S84C01 42200S84C571M1 |
051-6161 |
Carfitment
Honda Accord 1998-2002 L4 2.3L Non-ABS Drum brakes
Other Model List Reference( Please contact us for more details)
BCA | SKF | TIMKEN | Car Model |
512000 | BR930053 | 512000 | Saturn S Series |
512179 | BR930071 | 512179 | Acura |
513098 | FW156 | 513098 | Acura |
513033 | BR93571 | 513033 | Acura Integra |
513105 | BR930113 | 513105 | Acura Integra |
512012 | BR935718 | 512012 | Audi TT |
513125 | BR930161 | 513125 | BMW 318 |
513017K | BR93571K | 513017K | Buick Skyhawk |
512244 | BR930075 | HA590073 | Buick Allure |
513203 | BR930184 | HA590076/ HA590085 | Buick Allure |
512078 | BR930078 | 512078 | Buick Century |
512150 | BR930075 | 512150 | Buick Century |
512151 | BR930145 | 512151 | Buick Century |
512237 | BR930075 | 512237 | Buick Century |
513018 | BR930026 | 513018 | Buick Century |
513121 | BR930148 Threaded Hub/BR930548K | 513121 | Buick Century |
513160 | BR930184 | 513160 | Buick Century |
513179 | BR930149/930548K | 513179 | Buick Century |
513011K | BR930091K | 513011K | Buick Century |
513016K | BR930571K | 513016K | Buick Century |
513062 | BR930068 | 513062 | Buick Electra |
512003 | BR930074 | 512003 | Buick Lesabre |
513088 | BR930077 | 513088 | Buick LeSabre |
513087 | BR930076 | 513087 | Buick Park Ave |
512004 | BR930096 | 512004 | Buick Regal |
513044 | BR930083K | 513044 | Buick Regal |
513187 | BR930149/930548K | 513187 | Buick Rendevous |
513013 | BR930052K | 513013 | Buick Riviera |
513012 | BR930093 | 513012 | Buick Skyhawk |
512001 | BR930070 | 512001 | Buick Skylark |
515053 | BR93571 | SP450301 | Cadillac Escalade |
515571 | BR930346 | SP550307 | Cadillac Esclade |
513164 | BR930169 | HA596467 | Cadillac Catera |
515036 | BR930304 | SP500300 | cadillac Escalade |
515005 | BR930265 | 515005 | Chevy Astro |
515019 | BR935719 | SP550308 | Chevy Astro |
513200 | BR930497 | SP450300 | Chevy Blazer |
513090 | BR930186 | 513090 | Chevy Camaro |
513204 | BR935716 | HA590068 | Chevy Colbalt |
512229 | BR930327 | 512229 | Chevy Equinox |
512230 | BR930328 | 512230 | Chevy Equinox |
512152 | BR930098 | 512152 | Chevy Fleet Classic |
513137 | BR930080 | 513137 | Chevy Fleet Classic |
513215 | BR93571 | HA590071 | Chevy Malibu |
518507 | BR930300K | 518507 | Chevy Prizm |
515054 | SP550306 | Chevy Silverado | |
515058 | BR93571 | SP58571 | Chevy Silverado |
513193 | BR930308 | 513193 | Chevy Tracker |
513124 | BR930097 | 513124 | Chevy/GMC |
515018 | HA591339 | Chevy/GMC | |
515015 | BR930406 | SP580302/580303 | Chevy/GMC 20/2500 |
515016 | SP580300 | Chevy/GMC 20/2500 | |
515001 | BR930094 | 515001 | Chevy/GMC All K Series |
515002 | BR930035 | 515002 | Chevy/GMC K Series |
515041 | BR930406 | SP580302/580303 | Chevy/GMC K1500 |
515048 | Chevy/GMC K1500 | ||
515055 | Chevy/GMC K1500 | ||
515037 | Chevy/GMC K3500 | ||
513061 | BR930064 | 513061 | Chevy/GMC S15 Jimmy |
512133 | BR930176 | 512133 | Chrysler Cirrus |
512154 | BR930194 | 512154 | Chrysler Cirrus |
512220 | BR930199 | 512220 | Chrysler Cirrus |
513138 | BR930138 | 513138 | Chrysler Cirrus |
512571 | BR930188 / 189 | 512571 | Chrysler Concorde |
513089 | BR930190K | 513089 | Chrysler Concorde |
518501 | BR930001 | 518001 | Chrysler E Class |
518502 | BR930002 | 518502 | Chrysler E Class |
513075 | BR930013 | 513075 | Chrysler Le Baron |
518500 | BR930000 | 518500 | Chrysler LeBaron |
513123 | BR935715 | 513123 | Chrysler Prowler |
512167 | BR930173 | 512167 | Chrysler PT Cruiser |
512136 | BR930172 | 512136 | Chrysler Sebring |
512157 | BR930066 | 512157 | Chrysler Town & Country |
512169 | BR935718 | 512169 | Chrysler Town & Country |
512170 | BR935719 | 512170 | Chrysler Town & Country |
513074 | BR930571K | 513074 | Chrysler Town & Country |
513122 | BR935716 | 513122 | Chrysler Town & Country |
512155 | BR930069 | 512155 | Chrysler Town Country |
512156 | BR930067 | 512156 | Chrysler Town Country |
A wide range of applications:
• agriculture and forestry equipment
• automotive and industrial gearboxes
• automotive and truck electric components, such as alternators
• electric motors
• fluid machinery
• material handling
• power tools and household appliances
• textile machinery
• two Wheeler
Company Profile
Our Advantages
1.ISO Standard
2.Bearing Small order accepted
3.In Stock bearing
4.OEM bearing service
5.Professional Technical Support
6.Timely pre-sale service
7.Competitive price
8.Full range of products on auto bearings
9.Punctual Delivery
11.Excellent after-sale service
Packaging & Shipping
Packaging Details | 1 piece in a single box 50 boxes in a carton 20 cartons in a pallet |
Nearest Port | ZheJiang or HangZhou |
Lead Time | For stock parts: 1-5 days. If no stock parts: <200 pcs: 15-30 days ≥200 pcs: to be negotiated. |
FAQ
If you have any other questions, please feel free to contact us as follows:
Q: Why did you choose us?
1. We provide the best quality bearings with reasonable prices, low friction, low noise, and long service life.
2. With sufficient stock and fast delivery, you can choose our freight forwarder or your freight forwarder.
Q: Do you accept small orders?
100% quality check, once your bearings are standard size bearings, even one, we also accept.
Q: How long is your delivery time?
Generally speaking, if the goods are in stock, it is 1-3 days. If the goods are out of stock, it will take 6-10 days, depending on the quantity of the order.
Q: Do you provide samples? Is it free or extra?
Yes, we can provide a small number of free samples.
Q: What should I do if I don’t see the type of bearings I need?
We have too many bearing series numbers. Just send us the inquiry and we will be very happy to send you the bearing details.
Q: Could you accept OEM and customize?
A: Yes, we can customize for you according to sample or drawing, but, pls provide us technical data, such as dimension and mark.
Contact Us
The Different Types of Splines in a Splined Shaft
A splined shaft is a machine component with internal and external splines. The splines are formed in 4 different ways: Involute, Parallel, Serrated, and Ball. You can learn more about each type of spline in this article. When choosing a splined shaft, be sure to choose the right 1 for your application. Read on to learn about the different types of splines and how they affect the shaft’s performance.
Involute splines
Involute splines in a splined shaft are used to secure and extend mechanical assemblies. They are smooth, inwardly curving grooves that resist separation during operation. A shaft with involute splines is often longer than the shaft itself. This feature allows for more axial movement. This is beneficial for many applications, especially in a gearbox.
The involute spline is a shaped spline, similar to a parallel spline. It is angled and consists of teeth that create a spiral pattern that enables linear and rotatory motion. It is distinguished from other splines by the serrations on its flanks. It also has a flat top. It is a good option for couplers and other applications where angular movement is necessary.
Involute splines are also called involute teeth because of their shape. They are flat on the top and curved on the sides. These teeth can be either internal or external. As a result, involute splines provide greater surface contact, which helps reduce stress and fatigue. Regardless of the shape, involute splines are generally easy to machine and fit.
Involute splines are a type of splines that are used in splined shafts. These splines have different names, depending on their diameters. An example set of designations is for a 32-tooth male spline, a 2,500-tooth module, and a 30 degree pressure angle. An example of a female spline, a fillet root spline, is used to describe the diameter of the splined shaft.
The effective tooth thickness of splines is dependent on the number of keyways and the type of spline. Involute splines in splined shafts should be designed to engage 25 to 50 percent of the spline teeth during the coupling. Involute splines should be able to withstand the load without cracking.
Parallel splines
Parallel splines are formed on a splined shaft by putting 1 or more teeth into another. The male spline is positioned at the center of the female spline. The teeth of the male spline are also parallel to the shaft axis, but a common misalignment causes the splines to roll and tilt. This is common in many industrial applications, and there are a number of ways to improve the performance of splines.
Typically, parallel splines are used to reduce friction in a rotating part. The splines on a splined shaft are narrower on the end face than the interior, which makes them more prone to wear. This type of spline is used in a variety of industries, such as machinery, and it also allows for greater efficiency when transmitting torque.
Involute splines on a splined shaft are the most common. They have equally spaced teeth, and are therefore less likely to crack due to fatigue. They also tend to be easy to cut and fit. However, they are not the best type of spline. It is important to understand the difference between parallel and involute splines before deciding on which spline to use.
The difference between splined and involute splines is the size of the grooves. Involute splines are generally larger than parallel splines. These types of splines provide more torque to the gear teeth and reduce stress during operation. They are also more durable and have a longer life span. And because they are used on farm machinery, they are essential in this type of application.
Serrated splines
A Serrated Splined Shaft has several advantages. This type of shaft is highly adjustable. Its large number of teeth allows large torques, and its shorter tooth width allows for greater adjustment. These features make this type of shaft an ideal choice for applications where accuracy is critical. Listed below are some of the benefits of this type of shaft. These benefits are just a few of the advantages. Learn more about this type of shaft.
The process of hobbing is inexpensive and highly accurate. It is useful for external spline shafts, but is not suitable for internal splines. This type of process forms synchronized shapes on the shaft, reducing the manufacturing cycle and stabilizing the relative phase between spline and thread. It uses a grinding wheel to shape the shaft. CZPT Manufacturing has a large inventory of Serrated Splined Shafts.
The teeth of a Serrated Splined Shaft are designed to engage with the hub over the entire circumference of the shaft. The teeth of the shaft are spaced uniformly around the spline, creating a multiple-tooth point of contact over the entire length of the shaft. The results of these analyses are usually satisfactory. But there are some limitations. To begin with, the splines of the Serrated Splined Shaft should be chosen carefully. If the application requires large-scale analysis, it may be necessary to modify the design.
The splines of the Serrated Splined Shaft are also used for other purposes. They can be used to transmit torque to another device. They also act as an anti-rotational device and function as a linear guide. Both the design and the type of splines determine the function of the Splined Shaft. In the automobile industry, they are used in vehicles, aerospace, earth-moving machinery, and many other industries.
Ball splines
The invention relates to a ball-spinned shaft. The shaft comprises a plurality of balls that are arranged in a series and are operatively coupled to a load path section. The balls are capable of rolling endlessly along the path. This invention also relates to a ball bearing. Here, a ball bearing is 1 of the many types of gears. The following discussion describes the features of a ball bearing.
A ball-splined shaft assembly comprises a shaft with at least 1 ball-spline groove and a plurality of circumferential step grooves. The shaft is held in a first holding means that extends longitudinally and is rotatably held by a second holding means. Both the shaft and the first holding means are driven relative to 1 another by a first driving means. It is possible to manufacture a ball-splined shaft in a variety of ways.
A ball-splined shaft features a nut with recirculating balls. The ball-splined nut rides in these grooves to provide linear motion while preventing rotation. A splined shaft with a nut that has recirculating balls can also provide rotary motion. A ball splined shaft also has higher load capacities than a ball bushing. For these reasons, ball splines are an excellent choice for many applications.
In this invention, a pair of ball-spinned shafts are housed in a box under a carrier device 40. Each of the 2 shafts extends along a longitudinal line of arm 50. One end of each shaft is supported rotatably by a slide block 56. The slide block also has a support arm 58 that supports the center arm 50 in a cantilever fashion.
Sector no-go gage
A no-go gauge is a tool that checks the splined shaft for oversize. It is an effective way to determine the oversize condition of a splined shaft without removing the shaft. It measures external splines and serrations. The no-go gage is available in sizes ranging from 19mm to 130mm with a 25mm profile length.
The sector no-go gage has 2 groups of diametrally opposed teeth. The space between them is manufactured to a maximum space width and the tooth thickness must be within a predetermined tolerance. This gage would be out of tolerance if the splines were measured with a pin. The dimensions of this splined shaft can be found in the respective ANSI or DIN standards.
The go-no-go gage is useful for final inspection of thread pitch diameter. It is also useful for splined shafts and threaded nuts. The thread of a screw must match the contour of the go-no-go gage head to avoid a no-go condition. There is no substitute for a quality machine. It is an essential tool for any splined shaft and fastener manufacturer.
The NO-GO gage can detect changes in tooth thickness. It can be calibrated under ISO17025 standards and has many advantages over a non-go gage. It also gives a visual reference of the thickness of a splined shaft. When the teeth match, the shaft is considered ready for installation. It is a critical process. In some cases, it is impossible to determine the precise length of the shaft spline.
The 45-degree pressure angle is most commonly used for axles and torque-delivering members. This pressure angle is the most economical in terms of tool life, but the splines will not roll neatly like a 30 degree angle. The 45-degree spline is more likely to fall off larger than the other two. Oftentimes, it will also have a crowned look. The 37.5 degree pressure angle is a compromise between the other 2 pressure angles. It is often used when the splined shaft material is harder than usual.
China high quality Automotive Parts Front Axle Wheel Bearing Hub 8124130450 513124 for Chevrolet Blazer 1998-2005 4WD with Great quality
Product Description
HUB BEARINGS is the main role of load-bearing and provide accurate guidance for the rotation of the hub, it bears both axial load and radial load, is a very important component. The traditional automobile wheel bearing is composed of 2 sets of tapered roller bearing or ball bearing. The installation, oiling, sealing and clearance adjustment of the bearing are all carried out on the automobile production line. This structure makes it difficult to assemble in the automobile production plant, high cost, poor reliability, and the car in the maintenance point maintenance, but also need to clean, oiling and adjustment of bearings. Wheel hub bearing unit is in the standard angular contact ball bearings and tapered roller bearings, on the basis of it will be 2 sets of bearing as a whole, has the assembly clearance adjustment performance is good, can be omitted, light weight, compact structure, large load capacity, for the sealed bearing prior to loading, ellipsis external wheel grease seal and from maintenance etc, and has been widely used in cars, There is also a trend of gradually expanding application in truck.
How to Calculate the Diameter of a Worm Gear
In this article, we will discuss the characteristics of the Duplex, Single-throated, and Undercut worm gears and the analysis of worm shaft deflection. Besides that, we will explore how the diameter of a worm gear is calculated. If you have any doubt about the function of a worm gear, you can refer to the table below. Also, keep in mind that a worm gear has several important parameters which determine its working.
Duplex worm gear
A duplex worm gear set is distinguished by its ability to maintain precise angles and high gear ratios. The backlash of the gearing can be readjusted several times. The axial position of the worm shaft can be determined by adjusting screws on the housing cover. This feature allows for low backlash engagement of the worm tooth pitch with the worm gear. This feature is especially beneficial when backlash is a critical factor when selecting gears.
The standard worm gear shaft requires less lubrication than its dual counterpart. Worm gears are difficult to lubricate because they are sliding rather than rotating. They also have fewer moving parts and fewer points of failure. The disadvantage of a worm gear is that you cannot reverse the direction of power due to friction between the worm and the wheel. Because of this, they are best used in machines that operate at low speeds.
Worm wheels have teeth that form a helix. This helix produces axial thrust forces, depending on the hand of the helix and the direction of rotation. To handle these forces, the worms should be mounted securely using dowel pins, step shafts, and dowel pins. To prevent the worm from shifting, the worm wheel axis must be aligned with the center of the worm wheel’s face width.
The backlash of the CZPT duplex worm gear is adjustable. By shifting the worm axially, the section of the worm with the desired tooth thickness is in contact with the wheel. As a result, the backlash is adjustable. Worm gears are an excellent choice for rotary tables, high-precision reversing applications, and ultra-low-backlash gearboxes. Axial shift backlash is a major advantage of duplex worm gears, and this feature translates into a simple and fast assembly process.
When choosing a gear set, the size and lubrication process will be crucial. If you’re not careful, you might end up with a damaged gear or 1 with improper backlash. Luckily, there are some simple ways to maintain the proper tooth contact and backlash of your worm gears, ensuring long-term reliability and performance. As with any gear set, proper lubrication will ensure your worm gears last for years to come.
Single-throated worm gear
Worm gears mesh by sliding and rolling motions, but sliding contact dominates at high reduction ratios. Worm gears’ efficiency is limited by the friction and heat generated during sliding, so lubrication is necessary to maintain optimal efficiency. The worm and gear are usually made of dissimilar metals, such as phosphor-bronze or hardened steel. MC nylon, a synthetic engineering plastic, is often used for the shaft.
Worm gears are highly efficient in transmission of power and are adaptable to various types of machinery and devices. Their low output speed and high torque make them a popular choice for power transmission. A single-throated worm gear is easy to assemble and lock. A double-throated worm gear requires 2 shafts, 1 for each worm gear. Both styles are efficient in high-torque applications.
Worm gears are widely used in power transmission applications because of their low speed and compact design. A numerical model was developed to calculate the quasi-static load sharing between gears and mating surfaces. The influence coefficient method allows fast computing of the deformation of the gear surface and local contact of the mating surfaces. The resultant analysis shows that a single-throated worm gear can reduce the amount of energy required to drive an electric motor.
In addition to the wear caused by friction, a worm wheel can experience additional wear. Because the worm wheel is softer than the worm, most of the wear occurs on the wheel. In fact, the number of teeth on a worm wheel should not match its thread count. A single-throated worm gear shaft can increase the efficiency of a machine by as much as 35%. In addition, it can lower the cost of running.
A worm gear is used when the diametrical pitch of the worm wheel and worm gear are the same. If the diametrical pitch of both gears is the same, the 2 worms will mesh properly. In addition, the worm wheel and worm will be attached to each other with a set screw. This screw is inserted into the hub and then secured with a locknut.
Undercut worm gear
Undercut worm gears have a cylindrical shaft, and their teeth are shaped in an evolution-like pattern. Worms are made of a hardened cemented metal, 16MnCr5. The number of gear teeth is determined by the pressure angle at the zero gearing correction. The teeth are convex in normal and centre-line sections. The diameter of the worm is determined by the worm’s tangential profile, d1. Undercut worm gears are used when the number of teeth in the cylinder is large, and when the shaft is rigid enough to resist excessive load.
The center-line distance of the worm gears is the distance from the worm centre to the outer diameter. This distance affects the worm’s deflection and its safety. Enter a specific value for the bearing distance. Then, the software proposes a range of suitable solutions based on the number of teeth and the module. The table of solutions contains various options, and the selected variant is transferred to the main calculation.
A pressure-angle-angle-compensated worm can be manufactured using single-pointed lathe tools or end mills. The worm’s diameter and depth are influenced by the cutter used. In addition, the diameter of the grinding wheel determines the profile of the worm. If the worm is cut too deep, it will result in undercutting. Despite the undercutting risk, the design of worm gearing is flexible and allows considerable freedom.
The reduction ratio of a worm gear is massive. With only a little effort, the worm gear can significantly reduce speed and torque. In contrast, conventional gear sets need to make multiple reductions to get the same reduction level. Worm gears also have several disadvantages. Worm gears can’t reverse the direction of power because the friction between the worm and the wheel makes this impossible. The worm gear can’t reverse the direction of power, but the worm moves from 1 direction to another.
The process of undercutting is closely related to the profile of the worm. The worm’s profile will vary depending on the worm diameter, lead angle, and grinding wheel diameter. The worm’s profile will change if the generating process has removed material from the tooth base. A small undercut reduces tooth strength and reduces contact. For smaller gears, a minimum of 14-1/2degPA gears should be used.
Analysis of worm shaft deflection
To analyze the worm shaft deflection, we first derived its maximum deflection value. The deflection is calculated using the Euler-Bernoulli method and Timoshenko shear deformation. Then, we calculated the moment of inertia and the area of the transverse section using CAD software. In our analysis, we used the results of the test to compare the resulting parameters with the theoretical ones.
We can use the resulting centre-line distance and worm gear tooth profiles to calculate the required worm deflection. Using these values, we can use the worm gear deflection analysis to ensure the correct bearing size and worm gear teeth. Once we have these values, we can transfer them to the main calculation. Then, we can calculate the worm deflection and its safety. Then, we enter the values into the appropriate tables, and the resulting solutions are automatically transferred into the main calculation. However, we have to keep in mind that the deflection value will not be considered safe if it is larger than the worm gear’s outer diameter.
We use a four-stage process for investigating worm shaft deflection. We first apply the finite element method to compute the deflection and compare the simulation results with the experimentally tested worm shafts. Finally, we perform parameter studies with 15 worm gear toothings without considering the shaft geometry. This step is the first of 4 stages of the investigation. Once we have calculated the deflection, we can use the simulation results to determine the parameters needed to optimize the design.
Using a calculation system to calculate worm shaft deflection, we can determine the efficiency of worm gears. There are several parameters to optimize gearing efficiency, including material and geometry, and lubricant. In addition, we can reduce the bearing losses, which are caused by bearing failures. We can also identify the supporting method for the worm shafts in the options menu. The theoretical section provides further information.
China OEM Automotive Parts Rear Axle Wheel Bearing Hub 512136 Br930172 for Chrysler Sebring 1995-2005 Coupe near me supplier
Product Description
Product Description
A wheel bearing is applied to the automotive axle to load and provide accurate CZPT components for the rotation of the wheel hub, both bearing axial load and radial load. It has good performance to installing, omitted clearance, lightweight, compact structure, large load capacity, for the sealed bearing prior to loading, ellipsis external wheel grease seal and from maintenance, etc. And wheel bearing has been widely used in cars, trucks.
An Auto wheel bearing is the main usage of bearing and provides an accurate CZPT to the rotation of the wheel hub. Under axial and radial load, it is a very important component. It is developed on the basis of standardized angular contact ball bearings and tapered roller bearings.
Features:
A. auto wheel hub bearings are adopted with international superior raw material and high-class grease from USA Shell grease.
B.The series auto wheel hub bearings are in the nature of frame structure, lightweight, large rated burden, strong resistant capability, thermostability, good dustproof performance and etc.
C. Auto wheel hub bearing can be endured bidirectional axial load and major radial load and sealed bearings are unnecessary to add lubricant additives upon assembly.
Product Parameters
Item | Automotive parts Rear axle wheel bearing hub 512136 BR930172 for Chrysler Sebring 1995-2 Br930172 wheel hub assembly (Please contact us for more details) Chrysler Sebring 1995-2005 Coupe Dodge Avenger 1995-2000 Dodge Stratus 2001-2005 Coupe Eagle Talon 1995-1998 FWD Mitsubishi Eclipse 2000-2004 Mitsubishi Eclipse 1995-1999 FWD Mitsubishi Galant 1997-2003 Mitsubishi Galant 1996- From Apr 1/1996 Other Model List of Wheel hub unit( Please contact us for more details)
Our Company supplies wheel bearings, wheel hub unit, belt tensioner, hydraulic clutch release bearing, mechanic clutch release bearings Company Profile Our Advantages 1.ISO Standard 2.Bearing Small order accepted 3.In Stock bearing 4.OEM bearing service 5.Professional Technical Support 6.Timely pre-sale service Packaging & Shipping
FAQ
If you have any other questions, please feel free to contact us as follows:
Q: Why did you choose us? 1. We provide the best quality bearings with reasonable prices, low friction, low noise, and long service life. 2. With sufficient stock and fast delivery, you can choose our freight forwarder or your freight forwarder.
Q: Do you accept small orders? 100% quality check, once your bearings are standard size bearings, even one, we also accept.
Q: How long is your delivery time? Generally speaking, if the goods are in stock, it is 1-3 days. If the goods are out of stock, it will take 6-10 days, depending on the quantity of the order.
Q: Do you provide samples? Is it free or extra? Yes, we can provide a small number of free samples.
Q: What should I do if I don’t see the type of bearings I need? We have too many bearing series numbers. Just send us the inquiry and we will be very happy to send you the bearing details. Q: Could you accept OEM and customize?
|