China manufacturer All Size Torsion Trailer Axle with Brake Optional with Best Sales

Product Description

Torsion Axle Advantages
4 strips rubber inside for suspension system
Don’t have to maintain in working, save after sale cost
No noise when driving, just rubber tensile when pressing
Lifetime over 5 years, that longer than leaf spring suspension axle system
Suitable for a camper trailer, high precision equipment trailer, motorbike carrier trailer, and so no

Through adjusting the angle of the swing arm, to get a lower or higher ground clearance
The forged arm will get more strength when driving on bad road condition
Customized brackets to suit varies trailer chassis

How to select lazy torsion axle

1. Payload 
2. Braked or without brake
3. Technical parameters as below

Track Distance is hub face to hub face distance or disc face to disc fact distance
Outside Of Trailer Frame Measurement is designed depending on trailer frame (Note: mounting brackets customized)
V type and straight type optional, V type better, because of lower land clearance, so more safety when fast running on bad road condition.

Parts List

Hub kits list 

From bolts up to the hub, there all stock size, and easy to find in the local market.
Mastervim will supply easy wear parts for distributor and partner.

Test Facilities

The items as below
1. Design according to customers’ requirements or samples and drawings
2. Capability evaluation
3. Quality control plan
4. Toolings dies and jigs design and production
5. Prototypes production
6. Samples quality inspection and evaluation
7. Mass production and process control
8. Final inspection before shipment

Market Experience

1. Quality control (row material test before manufacturing)
2. Qualified brake system (our brake system offered to Dexter and Rockwell USA)
3. Strictly surface treatment (ball shot 15 minutes to get a smooth surface, then painting)
4. Unique design torsion axle structure(core inside, and R corner tube)
5. ODM service (we could manufacture the axle you use, specialized in the special axles, such as overlay, etc)
    Familiar with DEXTER, ROCKWELL, AL-KO, ADR, MONROC, and TVZ axle

Supply Chain
The supply chain has 15 worker team
We have a complete supply chain for trailer parts and related automotive sources
Depending on Mastervim owned produce swing arm, hub, drum, disc, rotor, spindle, faster production time and strictly QC

Terms & Service
50% deposit, the balance arranged before delivery
Full kit warranty 2 years
Completely parts OEM and supply

Light Trailer Axle Gallery
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Type: Axle
Certification: ISO/TS16949, CCC, DOT, CE
Loading Weight: 2T
Tire Number: 2
Condition: New
Brake System: Lazy,Disc,Electric Optional
Samples:
US$ 150/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

axle

What is the role of axles in electric vehicles, and how do they differ from traditional axles?

Electric vehicles (EVs) have unique requirements when it comes to their drivetrain systems, including the axles. The role of axles in EVs is similar to traditional vehicles, but there are some key differences. Here’s a detailed explanation of the role of axles in electric vehicles and how they differ from traditional axles:

Role of Axles in Electric Vehicles:

The primary role of axles in electric vehicles is to transmit torque from the electric motor(s) to the wheels, enabling vehicle propulsion. The axles connect the motor(s) to the wheels and provide support for the weight of the vehicle. Axles are responsible for transferring the rotational force generated by the electric motor(s) to the wheels, allowing the vehicle to move forward or backward.

In electric vehicles, the axles are an integral part of the drivetrain system, which typically includes an electric motor(s), power electronics, and a battery pack. The axles play a crucial role in ensuring efficient power transfer and delivering the desired performance and handling characteristics of the vehicle.

Differences from Traditional Axles:

While the fundamental role of axles in electric vehicles is the same as in traditional vehicles, there are some notable differences due to the unique characteristics of electric propulsion systems:

1. Integration with Electric Motors: In electric vehicles, the axles are often integrated with the electric motors. This means that the motor(s) and axle assembly are combined into a single unit, commonly referred to as an “electric axle” or “e-axle.” This integration helps reduce the overall size and weight of the drivetrain system and simplifies installation in the vehicle.

2. High Torque Requirements: Electric motors generate high amounts of torque from the moment they start, providing instant acceleration. As a result, axles in electric vehicles need to handle higher torque loads compared to traditional axles. They are designed to withstand the torque output of the electric motor(s) and efficiently transmit it to the wheels.

3. Regenerative Braking: Electric vehicles often utilize regenerative braking, which converts the vehicle’s kinetic energy into electrical energy and stores it in the battery. The axles in electric vehicles may incorporate systems or components that enable regenerative braking, such as sensors, controllers, and electric brake actuators.

4. Space Optimization: Electric vehicles often have different packaging requirements compared to traditional internal combustion engine vehicles. The axles in electric vehicles are designed to accommodate the space constraints and specific layout of the vehicle, considering the placement of the battery pack, electric motor(s), and other components.

5. Weight Considerations: Electric vehicles strive to optimize weight distribution to enhance efficiency and handling. Axles in electric vehicles may be designed with lightweight materials or innovative construction techniques to minimize weight while maintaining structural integrity and durability.

It’s important to note that the specific design and characteristics of axles in electric vehicles can vary depending on the vehicle manufacturer, drivetrain configuration (e.g., front-wheel drive, rear-wheel drive, all-wheel drive), and other factors. Automotive manufacturers and suppliers continually innovate and develop new axle technologies to meet the evolving demands of electric vehicle propulsion systems.

axle

What is the difference between front and rear axles in a typical vehicle?

In a typical vehicle, there are distinct differences between the front and rear axles due to their respective roles and functions. Here are the key differences:

  1. Position:
  2. The main difference between the front and rear axles is their position in the vehicle. The front axle is located in the front of the vehicle, while the rear axle is positioned at the rear. This positioning is determined by the vehicle’s drivetrain configuration.

  3. Steering:
  4. The front axle is responsible for steering the vehicle. It is connected to the steering system, allowing the driver to control the direction of the vehicle. The front axle typically includes components such as steering knuckles, tie rods, and steering linkages.

  5. Driving:
  6. The rear axle is primarily responsible for driving the vehicle’s wheels. It receives power from the engine through the transmission or differential and transfers that power to the rear wheels. The rear axle may include components such as axle shafts, differential gears, and wheel hubs.

  7. Suspension:
  8. Both the front and rear axles play a role in the vehicle’s suspension system, but their configurations and functions differ. The front axle typically incorporates suspension components such as control arms, struts, or independent suspension systems to provide better handling, stability, and ride comfort. The rear axle may have a solid axle setup or independent suspension depending on the vehicle’s design.

  9. Load Distribution:
  10. The load distribution on the front and rear axles varies. In a typical vehicle, the front axle carries the weight of the engine, transmission, and a portion of the vehicle’s weight due to the front-end weight bias. The rear axle bears the weight of the vehicle’s occupants, cargo, and a portion of the vehicle’s weight. This distribution helps maintain proper balance and stability during acceleration, braking, and cornering.

  11. Driving Characteristics:
  12. The differences between the front and rear axles can influence the vehicle’s driving characteristics. The front axle’s role in steering affects the vehicle’s maneuverability and responsiveness. The rear axle’s responsibility for driving the wheels affects traction, acceleration, and stability, particularly in rear-wheel drive or four-wheel drive vehicles.

It’s important to note that the specific configurations and characteristics of front and rear axles can vary depending on the vehicle’s make, model, and drivetrain system. Different types of vehicles, such as front-wheel drive, rear-wheel drive, or all-wheel drive, may have variations in axle design and functionality.

Understanding the differences between the front and rear axles is essential for proper maintenance, repairs, and modifications of the vehicle’s drivetrain and suspension systems. If you have specific questions about your vehicle’s axles, it’s recommended to consult your vehicle’s owner’s manual or seek advice from qualified mechanics or automotive professionals.

axle

What are the factors to consider when choosing an axle for a custom-built vehicle?

Choosing the right axle for a custom-built vehicle is crucial for ensuring optimal performance, durability, and safety. Here are several key factors to consider when selecting an axle for a custom-built vehicle:

  1. Vehicle Type and Intended Use:
  2. Consider the type of vehicle you are building and its intended use. Factors such as vehicle weight, power output, terrain (on-road or off-road), towing capacity, and payload requirements will influence the axle selection. Off-road vehicles may require axles with higher strength and durability, while performance-oriented vehicles may benefit from axles that can handle increased power and torque.

  3. Axle Type:
  4. Choose the appropriate axle type based on your vehicle’s drivetrain configuration. Common axle types include solid axles (live axles) and independent axles. Solid axles are often used in heavy-duty applications and off-road vehicles due to their robustness and ability to handle high loads. Independent axles offer improved ride quality and handling characteristics but may have lower load-carrying capacities.

  5. Weight Capacity:
  6. Determine the required weight capacity of the axle based on the vehicle’s weight and intended payload. It’s crucial to select an axle that can handle the anticipated loads without exceeding its weight rating. Consider factors such as cargo, passengers, and accessories that may contribute to the overall weight.

  7. Axle Ratio:
  8. Choose an axle ratio that matches your vehicle’s powertrain and desired performance characteristics. The axle ratio affects the torque multiplication between the engine and wheels, influencing acceleration, towing capability, and fuel efficiency. Higher axle ratios provide more torque multiplication for improved low-end power but may sacrifice top-end speed.

  9. Braking System Compatibility:
  10. Ensure that the chosen axle is compatible with your vehicle’s braking system. Consider factors such as the axle’s mounting provisions for brake calipers, rotor size compatibility, and the need for an anti-lock braking system (ABS) if required.

  11. Suspension Compatibility:
  12. Consider the compatibility of the chosen axle with your vehicle’s suspension system. Factors such as axle mounting points, suspension geometry, and overall ride height should be taken into account. Ensure that the axle can be properly integrated with your chosen suspension components and that it provides sufficient ground clearance for your specific application.

  13. Aftermarket Support:
  14. Consider the availability of aftermarket support for the chosen axle. This includes access to replacement parts, upgrade options, and technical expertise. A robust aftermarket support network can be beneficial for future maintenance, repairs, and customization needs.

  15. Budget:
  16. Set a realistic budget for the axle selection, keeping in mind that high-performance or specialized axles may come at a higher cost. Balance your requirements with your budget to find the best axle option that meets your needs without exceeding your financial limitations.

When choosing an axle for a custom-built vehicle, it’s recommended to consult with knowledgeable professionals, experienced builders, or reputable axle manufacturers. They can provide valuable guidance, assist in understanding technical specifications, and help you select the most suitable axle for your specific custom vehicle project.

China manufacturer All Size Torsion Trailer Axle with Brake Optional   with Best Sales China manufacturer All Size Torsion Trailer Axle with Brake Optional   with Best Sales
editor by CX 2024-04-24