Product Description
Product Description
A wheel bearing is applied to the automotive axle to load and provide accurate CZPT components for the rotation of the wheel hub, both bearing axial load and radial load. It has good performance to installing, omitted clearance, lightweight, compact structure, large load capacity, for the sealed bearing prior to loading, ellipsis external wheel grease seal and from maintenance, etc. And wheel bearing has been widely used in cars, trucks.
An Auto wheel bearing is the main usage of bearing and provides an accurate CZPT to the rotation of the wheel hub. Under axial and radial load, it is a very important component. It is developed on the basis of standardized angular contact ball bearings and tapered roller bearings.
Features:
A. auto wheel hub bearings are adopted with international superior raw material and high-class grease from USA Shell grease.
B.The series auto wheel hub bearings are in the nature of frame structure, lightweight, large rated burden, strong resistant capability, thermostability, good dustproof performance and etc.
C. Auto wheel hub bearing can be endured bidirectional axial load and major radial load and sealed bearings are unnecessary to add lubricant additives upon assembly.
Product Parameters
Item | Automotive parts Rear axle wheel bearing hub 512176 BR935716 for Honda Accord 1998-2002 L4 2.3L Non-ABS Drum brakes |
Fitting position |
Rear Axle left and right |
Parameter | Rear Axle Flange Diameter: 5.98 In. Bolt Circle Diameter: 4.50 In. Wheel Pilot Diameter: 2.52 In. Brake Pilot Diameter: 2.52 In. Flange Offset: 2.20 In. Hub Pilot Diameter: 2.60 In. Bolt Size: M12X1.5 Bolt Quantity: 4 Bolt Hole qty: N/A ABS Sensor: N Number of Splines: N/A |
||
ABS Sensor | No | ||
Package | 1,barreled package+outer carton+pallets 2,plastic bag+single box+outer carton+pallets 3,tube package+middle box+outer carton+pallets 4, According to your’s requirement |
||
Quality Control | We have a complete process for production and quality assurance to make sure our products can meet your requirement. 1. Assembly 2. Windage test 3. Cleaning 4. Rotary test 5. Greasing and gland 6. Noise inspection 7. Appearance inspection 8. Rust prevention |
Detailed Photos
Carfitment and part number
OEM No. | Ref. |
---|---|
512176 42200S84A01 42200S84C01 42200S84C571M1 |
051-6161 |
Carfitment
Honda Accord 1998-2002 L4 2.3L Non-ABS Drum brakes
Other Model List Reference( Please contact us for more details)
BCA | SKF | TIMKEN | Car Model |
512000 | BR930053 | 512000 | Saturn S Series |
512179 | BR930071 | 512179 | Acura |
513098 | FW156 | 513098 | Acura |
513033 | BR93571 | 513033 | Acura Integra |
513105 | BR930113 | 513105 | Acura Integra |
512012 | BR935718 | 512012 | Audi TT |
513125 | BR930161 | 513125 | BMW 318 |
513017K | BR93571K | 513017K | Buick Skyhawk |
512244 | BR930075 | HA590073 | Buick Allure |
513203 | BR930184 | HA590076/ HA590085 | Buick Allure |
512078 | BR930078 | 512078 | Buick Century |
512150 | BR930075 | 512150 | Buick Century |
512151 | BR930145 | 512151 | Buick Century |
512237 | BR930075 | 512237 | Buick Century |
513018 | BR930026 | 513018 | Buick Century |
513121 | BR930148 Threaded Hub/BR930548K | 513121 | Buick Century |
513160 | BR930184 | 513160 | Buick Century |
513179 | BR930149/930548K | 513179 | Buick Century |
513011K | BR930091K | 513011K | Buick Century |
513016K | BR930571K | 513016K | Buick Century |
513062 | BR930068 | 513062 | Buick Electra |
512003 | BR930074 | 512003 | Buick Lesabre |
513088 | BR930077 | 513088 | Buick LeSabre |
513087 | BR930076 | 513087 | Buick Park Ave |
512004 | BR930096 | 512004 | Buick Regal |
513044 | BR930083K | 513044 | Buick Regal |
513187 | BR930149/930548K | 513187 | Buick Rendevous |
513013 | BR930052K | 513013 | Buick Riviera |
513012 | BR930093 | 513012 | Buick Skyhawk |
512001 | BR930070 | 512001 | Buick Skylark |
515053 | BR93571 | SP450301 | Cadillac Escalade |
515571 | BR930346 | SP550307 | Cadillac Esclade |
513164 | BR930169 | HA596467 | Cadillac Catera |
515036 | BR930304 | SP500300 | cadillac Escalade |
515005 | BR930265 | 515005 | Chevy Astro |
515019 | BR935719 | SP550308 | Chevy Astro |
513200 | BR930497 | SP450300 | Chevy Blazer |
513090 | BR930186 | 513090 | Chevy Camaro |
513204 | BR935716 | HA590068 | Chevy Colbalt |
512229 | BR930327 | 512229 | Chevy Equinox |
512230 | BR930328 | 512230 | Chevy Equinox |
512152 | BR930098 | 512152 | Chevy Fleet Classic |
513137 | BR930080 | 513137 | Chevy Fleet Classic |
513215 | BR93571 | HA590071 | Chevy Malibu |
518507 | BR930300K | 518507 | Chevy Prizm |
515054 | SP550306 | Chevy Silverado | |
515058 | BR93571 | SP58571 | Chevy Silverado |
513193 | BR930308 | 513193 | Chevy Tracker |
513124 | BR930097 | 513124 | Chevy/GMC |
515018 | HA591339 | Chevy/GMC | |
515015 | BR930406 | SP580302/580303 | Chevy/GMC 20/2500 |
515016 | SP580300 | Chevy/GMC 20/2500 | |
515001 | BR930094 | 515001 | Chevy/GMC All K Series |
515002 | BR930035 | 515002 | Chevy/GMC K Series |
515041 | BR930406 | SP580302/580303 | Chevy/GMC K1500 |
515048 | Chevy/GMC K1500 | ||
515055 | Chevy/GMC K1500 | ||
515037 | Chevy/GMC K3500 | ||
513061 | BR930064 | 513061 | Chevy/GMC S15 Jimmy |
512133 | BR930176 | 512133 | Chrysler Cirrus |
512154 | BR930194 | 512154 | Chrysler Cirrus |
512220 | BR930199 | 512220 | Chrysler Cirrus |
513138 | BR930138 | 513138 | Chrysler Cirrus |
512571 | BR930188 / 189 | 512571 | Chrysler Concorde |
513089 | BR930190K | 513089 | Chrysler Concorde |
518501 | BR930001 | 518001 | Chrysler E Class |
518502 | BR930002 | 518502 | Chrysler E Class |
513075 | BR930013 | 513075 | Chrysler Le Baron |
518500 | BR930000 | 518500 | Chrysler LeBaron |
513123 | BR935715 | 513123 | Chrysler Prowler |
512167 | BR930173 | 512167 | Chrysler PT Cruiser |
512136 | BR930172 | 512136 | Chrysler Sebring |
512157 | BR930066 | 512157 | Chrysler Town & Country |
512169 | BR935718 | 512169 | Chrysler Town & Country |
512170 | BR935719 | 512170 | Chrysler Town & Country |
513074 | BR930571K | 513074 | Chrysler Town & Country |
513122 | BR935716 | 513122 | Chrysler Town & Country |
512155 | BR930069 | 512155 | Chrysler Town Country |
512156 | BR930067 | 512156 | Chrysler Town Country |
A wide range of applications:
• agriculture and forestry equipment
• automotive and industrial gearboxes
• automotive and truck electric components, such as alternators
• electric motors
• fluid machinery
• material handling
• power tools and household appliances
• textile machinery
• two Wheeler
Company Profile
Our Advantages
1.ISO Standard
2.Bearing Small order accepted
3.In Stock bearing
4.OEM bearing service
5.Professional Technical Support
6.Timely pre-sale service
7.Competitive price
8.Full range of products on auto bearings
9.Punctual Delivery
11.Excellent after-sale service
Packaging & Shipping
Packaging Details | 1 piece in a single box 50 boxes in a carton 20 cartons in a pallet |
Nearest Port | ZheJiang or HangZhou |
Lead Time | For stock parts: 1-5 days. If no stock parts: <200 pcs: 15-30 days ≥200 pcs: to be negotiated. |
FAQ
If you have any other questions, please feel free to contact us as follows:
Q: Why did you choose us?
1. We provide the best quality bearings with reasonable prices, low friction, low noise, and long service life.
2. With sufficient stock and fast delivery, you can choose our freight forwarder or your freight forwarder.
Q: Do you accept small orders?
100% quality check, once your bearings are standard size bearings, even one, we also accept.
Q: How long is your delivery time?
Generally speaking, if the goods are in stock, it is 1-3 days. If the goods are out of stock, it will take 6-10 days, depending on the quantity of the order.
Q: Do you provide samples? Is it free or extra?
Yes, we can provide a small number of free samples.
Q: What should I do if I don’t see the type of bearings I need?
We have too many bearing series numbers. Just send us the inquiry and we will be very happy to send you the bearing details.
Q: Could you accept OEM and customize?
A: Yes, we can customize for you according to sample or drawing, but, pls provide us technical data, such as dimension and mark.
Contact Us
The Different Types of Splines in a Splined Shaft
A splined shaft is a machine component with internal and external splines. The splines are formed in 4 different ways: Involute, Parallel, Serrated, and Ball. You can learn more about each type of spline in this article. When choosing a splined shaft, be sure to choose the right 1 for your application. Read on to learn about the different types of splines and how they affect the shaft’s performance.
Involute splines
Involute splines in a splined shaft are used to secure and extend mechanical assemblies. They are smooth, inwardly curving grooves that resist separation during operation. A shaft with involute splines is often longer than the shaft itself. This feature allows for more axial movement. This is beneficial for many applications, especially in a gearbox.
The involute spline is a shaped spline, similar to a parallel spline. It is angled and consists of teeth that create a spiral pattern that enables linear and rotatory motion. It is distinguished from other splines by the serrations on its flanks. It also has a flat top. It is a good option for couplers and other applications where angular movement is necessary.
Involute splines are also called involute teeth because of their shape. They are flat on the top and curved on the sides. These teeth can be either internal or external. As a result, involute splines provide greater surface contact, which helps reduce stress and fatigue. Regardless of the shape, involute splines are generally easy to machine and fit.
Involute splines are a type of splines that are used in splined shafts. These splines have different names, depending on their diameters. An example set of designations is for a 32-tooth male spline, a 2,500-tooth module, and a 30 degree pressure angle. An example of a female spline, a fillet root spline, is used to describe the diameter of the splined shaft.
The effective tooth thickness of splines is dependent on the number of keyways and the type of spline. Involute splines in splined shafts should be designed to engage 25 to 50 percent of the spline teeth during the coupling. Involute splines should be able to withstand the load without cracking.
Parallel splines
Parallel splines are formed on a splined shaft by putting 1 or more teeth into another. The male spline is positioned at the center of the female spline. The teeth of the male spline are also parallel to the shaft axis, but a common misalignment causes the splines to roll and tilt. This is common in many industrial applications, and there are a number of ways to improve the performance of splines.
Typically, parallel splines are used to reduce friction in a rotating part. The splines on a splined shaft are narrower on the end face than the interior, which makes them more prone to wear. This type of spline is used in a variety of industries, such as machinery, and it also allows for greater efficiency when transmitting torque.
Involute splines on a splined shaft are the most common. They have equally spaced teeth, and are therefore less likely to crack due to fatigue. They also tend to be easy to cut and fit. However, they are not the best type of spline. It is important to understand the difference between parallel and involute splines before deciding on which spline to use.
The difference between splined and involute splines is the size of the grooves. Involute splines are generally larger than parallel splines. These types of splines provide more torque to the gear teeth and reduce stress during operation. They are also more durable and have a longer life span. And because they are used on farm machinery, they are essential in this type of application.
Serrated splines
A Serrated Splined Shaft has several advantages. This type of shaft is highly adjustable. Its large number of teeth allows large torques, and its shorter tooth width allows for greater adjustment. These features make this type of shaft an ideal choice for applications where accuracy is critical. Listed below are some of the benefits of this type of shaft. These benefits are just a few of the advantages. Learn more about this type of shaft.
The process of hobbing is inexpensive and highly accurate. It is useful for external spline shafts, but is not suitable for internal splines. This type of process forms synchronized shapes on the shaft, reducing the manufacturing cycle and stabilizing the relative phase between spline and thread. It uses a grinding wheel to shape the shaft. CZPT Manufacturing has a large inventory of Serrated Splined Shafts.
The teeth of a Serrated Splined Shaft are designed to engage with the hub over the entire circumference of the shaft. The teeth of the shaft are spaced uniformly around the spline, creating a multiple-tooth point of contact over the entire length of the shaft. The results of these analyses are usually satisfactory. But there are some limitations. To begin with, the splines of the Serrated Splined Shaft should be chosen carefully. If the application requires large-scale analysis, it may be necessary to modify the design.
The splines of the Serrated Splined Shaft are also used for other purposes. They can be used to transmit torque to another device. They also act as an anti-rotational device and function as a linear guide. Both the design and the type of splines determine the function of the Splined Shaft. In the automobile industry, they are used in vehicles, aerospace, earth-moving machinery, and many other industries.
Ball splines
The invention relates to a ball-spinned shaft. The shaft comprises a plurality of balls that are arranged in a series and are operatively coupled to a load path section. The balls are capable of rolling endlessly along the path. This invention also relates to a ball bearing. Here, a ball bearing is 1 of the many types of gears. The following discussion describes the features of a ball bearing.
A ball-splined shaft assembly comprises a shaft with at least 1 ball-spline groove and a plurality of circumferential step grooves. The shaft is held in a first holding means that extends longitudinally and is rotatably held by a second holding means. Both the shaft and the first holding means are driven relative to 1 another by a first driving means. It is possible to manufacture a ball-splined shaft in a variety of ways.
A ball-splined shaft features a nut with recirculating balls. The ball-splined nut rides in these grooves to provide linear motion while preventing rotation. A splined shaft with a nut that has recirculating balls can also provide rotary motion. A ball splined shaft also has higher load capacities than a ball bushing. For these reasons, ball splines are an excellent choice for many applications.
In this invention, a pair of ball-spinned shafts are housed in a box under a carrier device 40. Each of the 2 shafts extends along a longitudinal line of arm 50. One end of each shaft is supported rotatably by a slide block 56. The slide block also has a support arm 58 that supports the center arm 50 in a cantilever fashion.
Sector no-go gage
A no-go gauge is a tool that checks the splined shaft for oversize. It is an effective way to determine the oversize condition of a splined shaft without removing the shaft. It measures external splines and serrations. The no-go gage is available in sizes ranging from 19mm to 130mm with a 25mm profile length.
The sector no-go gage has 2 groups of diametrally opposed teeth. The space between them is manufactured to a maximum space width and the tooth thickness must be within a predetermined tolerance. This gage would be out of tolerance if the splines were measured with a pin. The dimensions of this splined shaft can be found in the respective ANSI or DIN standards.
The go-no-go gage is useful for final inspection of thread pitch diameter. It is also useful for splined shafts and threaded nuts. The thread of a screw must match the contour of the go-no-go gage head to avoid a no-go condition. There is no substitute for a quality machine. It is an essential tool for any splined shaft and fastener manufacturer.
The NO-GO gage can detect changes in tooth thickness. It can be calibrated under ISO17025 standards and has many advantages over a non-go gage. It also gives a visual reference of the thickness of a splined shaft. When the teeth match, the shaft is considered ready for installation. It is a critical process. In some cases, it is impossible to determine the precise length of the shaft spline.
The 45-degree pressure angle is most commonly used for axles and torque-delivering members. This pressure angle is the most economical in terms of tool life, but the splines will not roll neatly like a 30 degree angle. The 45-degree spline is more likely to fall off larger than the other two. Oftentimes, it will also have a crowned look. The 37.5 degree pressure angle is a compromise between the other 2 pressure angles. It is often used when the splined shaft material is harder than usual.